

UNIVERBITY OF WIBCONBIN - MILWAUKEE

From the beginning of these studias, the idertities of the persons under study have. baen kept contidential. We look to you to cary on this trust. Please guard the privacy of the persons involved by substituting fictitious names, or codie syybuol for real names.

For some time, we have looked at the interviewing mothod as a means by which we could get a general idea of employees' mental attitudes, and with this knowledge would be able to discover dif ferences between groups of employees. In the past, we have been unable to make much progress in thas direction, due largely to the fact that no numerical method has been available whereby we could classify each interview as an entity. The percentages of favorable and unfavorable comments have been calculated for individual departments, but these coments pertain to a particular subject or group. This reflects little difforence in the mental attitudes of the individuals. That is needed is a method of evaluating objectively the general tone of the interview so that these ovaluations can be compared. A method by which this might be accomplished was euggested by Dr. Henderson during his recent visit, and the following papor reports the results of a study based on his suggestion.

The method suggested was to determine a mathematical ratio between an employee's favorable and unfarorable comments, with the thought in mind that this would give us an index (expressed mathematically) of the tone of the entire interview. If a process of analyza-- tion could be formalated, which developed surficiently explicit criteria, all interviews could be evaluated with compatible results. This method should gire rise to statistical procedure having susficient ralidity to warrant its use:
getollowing the lead presented by \square suggested a simple formula for arrivine at mathematical index, which could be expressed as follows: $I=\frac{Y}{}$ where "Yw represents the number of unfavorable commants made fythe employee, and "Z" the number of favorable comments.

After a rather thorough conference discussion of this propowal among members of Department $6088-1$, it was decided to hare four interviewers analyze the sam one hundred interviews, selected at randon, to dotomine how much variation there would be in the scores of the difforent individuala maling the ratinge. It was sereed that this was to be done to develop a tentative method of analysis.

The group chomen for the analysis, realizing that comments were not of equal importance to the interviewer, sugested tro methods by which these might be weighed. The firmt was to asaign numorical values to the coments, mioh would indieate their relative importance. These values varied from 1 to 10 , which meant that a

- 8088-1:
- 2 -
Fobruary 19, 1931.
comment rating 5 was relatively neutral, while those at the extremes of the scale, 1 and 10, represented respectively the maximem and minimum of optimistic tone. The difficulty of placing comments in this wide range scale led to the method which was used during the analysis; namely, that of assigning the number of "Y's" and "Z's" which the comment seemed to warrant, when considaring it in relation to other comments, and to the interview as whole.
In educational work, the grading of examination papors has always been a point of great disciassion, and pedagogists have spent considerable time in attempting to standardize the grading system in this field. This can be done only to a certain point, as the juagement of the indiridual graders must be taken into consideration. In order to arrive at comparible results, standard grades must be determined by applying factors to the grades given by each inetructor, which allow for the tondencies to grade higher or lower than the norm.
Our problem was very similar. We had a derinite formula in which we substituted values, but these values were, in themselves, dependent to a certain extent upon individual opinion. It was necessary, therefore, to calculate standard scores for each of the four hundred ratings before we could determine the correlation coeflicients. This was done by obtaining the actual deviation of each of the raw scores from the mean score of the analyst assigning that porticular rating, and dividing these by the calculated standard deviation (σ) of the same analyat. Scores computed in this fashion were numerically compatible; the variable factor of differences from the norm was accounted for.
After the effect of this factor was eliminatad, the standard scores of each analyst were plotted againat those of every other analyst, and the Pearson Coefficients of Correlation deternined. These coefficients ranged from . 63 to . 82 , a correlation that was significantly high. A table showing the standard scores, and the six correlation graphs with the Pearson Coefficients aro given in the appendix
After the completion of the calculations, the group which performed the amalysis again met, and suggested the following me'thod of analysia in detemining the index of an interview:

1. The interview should be read carefully. This gives a general idea of the contents, and in mony cases, statements may be eraluated by comsidering explanatory matter which follows the initial comment. .
2. Th subjecte which the omployee: wishes to talk about are graded and weighted according to their seoming importance to the empleree. 411 subjects, therefore, bear a ratio to each otiner, and the rating assigned should show the deeree of difference oxisting in them. the analyet mat not rate a mbjeet by considering the effect upon himelf, but
```
- 6088-1:
must be guided by what the interviewee himself states.
```

In the latter part of the appendix, we have included an interview on which the index has been calculated. Assigned ralues of the comments, and marginal notations are found at the left of the interview.

We conclude from this study that this particular method has merjt, as the reaults clearly indicate that it lends itself, and is adaptible to a statistical procedure. Before recomending its adoption as a standard procedure for our work, however, we believe that a larger sample should be analyzed.

BL

C
(1)

ANALYSIS OF 100 INTHRVIEHS

	Rating				Actual Deriation				Standard Score			
					Mean				-			
	1	2	3	4	$\frac{.499}{1}$	$\begin{gathered} .536 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 491 \\ 3 \end{gathered}$	$\begin{gathered} .569 \\ 4 \end{gathered}$	$\begin{gathered} .224 \\ 1 \end{gathered}$	$\begin{gathered} 207 \\ 2 \end{gathered}$	$\begin{gathered} .246 \\ 3 \end{gathered}$	$.195$
$\begin{aligned} & \text { Int. } \\ & \text { No. } \\ & \hline \end{aligned}$.-			$\begin{array}{r} \text { Score } \\ -\quad \text { Mean } \\ \hline \end{array}$	$\begin{array}{r} \text { Score } \\ -\quad \text { Moan } \\ \hline \end{array}$	$\begin{array}{r} \text { Score } \\ -\quad \text { Merm } \\ \hline \end{array}$	$\begin{array}{r} \text { Score } \\ \text { - Moan } \end{array}$	$\text { Act. } \frac{D_{2}}{\text { S. }}$	$\begin{array}{r} \text { Act. } D_{0} \\ S_{0} \end{array}$	$\frac{\text { Act. } D_{0}}{S_{0}}$	$\frac{A_{0} D_{0} I}{S_{0} I}$
1	. 50	. 50	. 43	. 61	+.001	-. 036	-.061	+.041	+.004	-. 174	-. 248	+. 210
8	. 55	. 60	. 43	. 64	+.051	+ 4.064	-. 061	4.071	4.228	+.309	-. 248	+.364
3	86	. 66	1.00	. 88	+.361	\$.124	4.509	+.311	+1.611	4.599	+2.068	\$1.594
4	$\cdot 58$. 62	. 54	. 61	+.021	+.084	+.049	+.041	+.094	-. 406	-. 201	+,210
5	. 47	. 28	45	. 57	-.029	-. 066	-.041	+,001	-. 129	-. 319	4.167	+,005
6	04	. 89	.90	4	-. 059	-. 096	+.409	-. 129	-. 263	-. 464	-1.688	-. 868
7	. 48	. 50	. 45	. 56	-. 079	-. 7116	-. 041	-019	-. 353	-. 561	-. 7.77	-. 097
8	. 71	. 85.	.77	. 60	+.211	$\bullet 314$	+279	+0.031		+1. 517	4.1 .133	+. 159
9	. 80	. 50	. 50	. 60	+001	-. 036	+,009	+.051	+.004	-. 174	4.037	+. 159
10	.93	. 86	.71	.92	+.431	+. 58	+2II	+.351	+1.925	+1.565	+ 8.898	-1.487
11	. 91	1.00	. $91{ }^{*}$. 96	+. 411	- 464	+ 412	-. 301	+1.854	ST834,	1.720	+8.005
18	. 68	. 67	. 53	. 80	+.127	- 134	+.039	-. 251	+.540	-648	+. 158	-1.184
13	.16	. 12	. 12	. 29	-. 330	-. 416	-. 371	-. 279	01.513	-2.010	-1.508	-1.430
14	. 50	. 20	. 30	. 29	+.001	-. 336	-. 191	-. 279	+.004	-1.623	? - 777	-1.430
16	.64	. 68	. 58	. 82	+.141	+.084	+.089	4.251	+.630	-.396	-. 362	41.287
16	. 45	. 42	. 57	. 50	4.049	-. 116	+.079	-. 069	-. 219	-. 561	+.321	-. 354
17	. 01	. 22	. 00	. 25	-. 489	-. 316	-. 491	-. 315	-2.192	-1.528	-1.996	-1.614
18	. 38	.58	. 50	.56	-. 119	t.044	+.009	-. 019	-. 531	+.213	+.037	-.097
19	. 35	. 95	. 20	.41	-. 1149	+.414	-. 291	-. 159	-. 666	+.200	-1.188	-. 816
80	. 38	. 50	. 25	. 80	¢. 081	-. 036	-. 241	4.031	+.362	-. 174	-. 979	+.159
21	. 77	. 56	. 77	. 60	+.871	4.084	4.279	\$.031	+1.209	4.116	\$1.133	4.159
22	. 61	. 53	. 47	.70	4.111	-. 0006	-. 021	4.131	+.496	-. 020	-. 085	4.678
23	. 66	. 50	. 69	. 73	\$.161	-. 036	4.198	+.161	+.718	-. 174	+ 8.809	\$.826
24	. 50	. 33	. 25	.56	\$.001	-. 206	-.241	-.009	+.004	-. 996	-. 979	-. 046
25	. 69	. 67	. 75	. 65	+.191	+.134	+.259	\$.081	4.853	+.648	+1.053	+. 415
26	. 60	. 55	. 50	. 64	+.101	+.014	\$.009	4.071	+.4.42	\$.088	+1.037	+.364
27	.16	.33	. 17	.37	-. 359	-. 206	-. 321	-. 191	-1.515	-. 996	-1.305	-. 979
28	. 57	. 60	.57	. 57	7.071	\$.064	+.079	+.001	4.317	4.300	3.321	1.005
89	. 66	.11	.71	. 63	7.161	4.174	4.819	4.061	\$.719	4.844	4.802	2.313
30	. 83	.47	.75	. 75	7.351	7.234	4.800	\$.181	+1.47\%	11.150	\$1.065	1.928
31	. 09	.88	. 85	. 92	\$.409	4.344	+.369	4.351	\$1.828	41.661	42.458	+1.487
38	.71	. 64	. 25	.75	4.211	+.104	-. 241	4.181	+.942	+,503	$-.979$	1.928

ANAIYSTS OF 100 INTIERVIEFS

UNIVEREITY OF WIBCDNEIN - MILWAUKEE

* Analyets' Intorviow.

			X VARIABLE $=$ STADDAR Scorrs														NUMBER OF CASES $(N)=100$								X VAR／ABLE＝standrd scorms										araus\％\％														
				san													f	d_{7}	fd_{2}	fd_{v}^{2}	$\begin{aligned} & \sum f d_{x}+=0 \\ & \sum \mathrm{fd}_{x}-=172 \\ & \sum \mathrm{fd}_{x}=-104 \end{aligned}$	$\begin{aligned} & \Sigma f d_{y}+=85 \\ & \Sigma f d_{y}-=104 \\ & \Sigma f d_{y}=-70 \end{aligned}$						${ }_{\text {Luss }}{ }^{\text {LS }}$	${ }^{\text {radau }}$	dypriss																			
									4														4^{41}																										
									\cdots												$\begin{aligned} & c_{x}=\frac{\Sigma f d_{x}}{N}=1.00 \\ & c_{x}^{2}=1.08 \end{aligned}$	$\begin{aligned} & c_{y}=\frac{\sum f d_{y}}{N}=.79 \\ & c_{y}^{2}=.01 \end{aligned}$																											
									\％																																								
		＋1，8972820	248						（4）								3	5	15	75				41．897＋2	248											1	2												
		11．55s＋1	808						\％								5	1	20	80	$\begin{aligned} & \frac{\Sigma f d_{x}^{2}}{N}=\frac{976}{100}=0.76 \\ & \frac{\Sigma f d_{x}^{2}}{N}-c_{x}^{2}=8.08 \\ & \sigma_{x}=\sqrt{\frac{\Sigma f d_{x}^{2}}{N}-C_{x}^{2}}=2.06 \end{aligned}$	$\begin{aligned} & \frac{\Sigma f d_{y}^{2}}{N}=\frac{941}{100}=9.42 \\ & \frac{\sum f d_{y}^{2}}{N}-C_{y}^{2}=0.80 \\ & \sigma_{y}=\sqrt{\frac{\sum f d_{y}^{2}}{N}-C_{y}^{2}}=2.95 \end{aligned}$		12． $553+1$	998												2	2											
		41，20941／5	552														8	\％	24	72			易	21．20091	558					1					2	31	1												
	昂	7． $8055+120$	208														6	－	12	4				8．865＋1	－08					1							1												
		t．5．51＋	864						\％								14	．	14	14				． $6.522+$	－304					1	1.		4	3	3	${ }_{3} 1$													
		4．177＋																																2	1														
	\％	（4．177＋	${ }^{580}$						\％								10	10	10	10				． 1777	${ }_{278}^{520}$					2	1	1.	3	3		1	1												
		－．187＋	1108						W：								10	1	26	58	$\begin{aligned} & \sum X Y+=787 \\ & \sum X Y=0 \\ & \sum X Y=127 \\ & \sum X Y=9.87 \end{aligned}$$\begin{aligned} & \sigma_{x} \sigma_{y}=8.07 \\ & r=\frac{\frac{\sum X Y}{N}-c_{x} c_{y}}{\sigma_{x} \sigma_{y}}=.74 \end{aligned}$			． 516	188			1		1				${ }_{2}$	2		1												
		－	512						W									8.	26	${ }_{78}$			暑。	． 8 ．											2		1												
		－	${ }^{518}$															3	2	78									2																				
		－1．199－ 8															11	1.	4	176			4	－1．199－	． 856			2	2		8	3	1	1															
		－	200						\cdots									3	15	75			$\begin{aligned} & 0 \\ & 5 \\ & 5 \\ & 5 \\ & > \end{aligned}$	－1．555－1	200				2	1																			
		－1．887－1 55	554						\cdots									4.	24	144	$\begin{array}{lll} \frac{\Sigma X Y}{N}=9.87 & \ddots & P \cdot E_{r}=6745 \frac{1-r^{2}}{\sqrt{N}}=.05 \\ c_{x} c_{y}=.82 & \end{array}$			－1．8897－1	． 554		－	1		3																			
	5	－2．931－1）	888	${ }^{\prime \prime}$														3	21	147			－2．231－1．				3																						
		－2．575－2．23	238																		$\frac{\sum X Y}{N}-c_{x} c_{y}=0.45$	$r=.74 \quad \pm .03$		2．575－2．																									
		－2．019－2 ${ }^{57}$	576						4																－8．019－2．																								
		f		7	23	11	51	1017	12	－	15						SUBJECTS \qquad COMPUTED Br \qquad CHECKED BY \qquad DATE $\xlongequal[2-8-1-32]{ }$ DATA SHEET FOR COMPUTATION OF：PEARSON＇S r						ΣY	Y＋	8	20	15	11	－	\bigcirc	－	5	－	－	－	0													
																											4	4	7	24	21	12	39	14	19	22													
		d_{x}		7	－ 5	4	3	21	\bigcirc	1	2		45											$+$		20	11	7	：																				
		fd_{x}		16	12125	442	25	80.17			161	\％	． 10																	14	15	9	30	14	19	21													
		$\mathrm{fd}_{\mathrm{x}}{ }^{\text {2 }}$		$1{ }_{30}$	${ }_{72}$			0			18		，											$X Y+$	40	80	35	14	2	14	so	27	258	70	114	147													
	4－9－24																																																

UNIVEREITY QF WIBCONBIN - MILWAUKEE

UNIVEREITY OF WIBCONBIN - MILWAUKEE

Fir

work on the night shift for some reason of his own. If he gots one of the fellows on that shift to trade with him, why thon that is all right,"

It "They they allow that."
I: Oh, Jes. The Foreman has no objeotion to that at all. Only you have to let them know so that they can make the proper arrangaments with the payroll."

E: Well, that is one that I mouid like to get rid of." I: "Is that so?" W. Mhat is the worst one for me. of course, I get home in protty good time, but by the time I get something to cat, I an ready for bed by tivelve o'clock, but I can't seem to go to sleep after that." I: "I suppose that is beceuse you have had something to eat, isn't it?" E: "I don't know what it is. I lay awake and don't have a good rest at all. I think the eleven seven shift is

I: What means that you have your orening for anything that you might want."

T: WThat suits a young man juet right. of courme, if a fellot were married; I suppose he would want to be home at that time."

I: Mhat would make quite a difference. Hight yours service I see. Is that all in this departmont?"

Es Oh, no. I apent six years ovor in Departmont Dach, but thes were monding that work Iant, 20 I had to find a job somphere elae. They tranaferred me over here."

I: "It is pretty good, is it?"
I: "Ios, oxcept as I had to tiart in bere at now man."
Is Mras, that is the way it goes when a fellow is on a new job. It is just like coming to the Company for the first time.*.

Ing

UNIVEREITY OF WIBCONBIN - MILWAUKEE

min

业
 tarnings
 "Y" Value

 one now."
-

Ha

UNIVERBITY OF WIBCONBIN - MILWAUKEE

	I: "Oh, it is an Essex then."
	In: "So you know all about them. Did you ever drive one?"
	I: "No, I didn't. I have no car."
	F. laughing: "I thought that the way you talk, you had beon atung on an Eisex, too."
	I: "You don't think much of them?"
carc MY Value	F:- "Well, I dan't think I got good service out of that one that I ought to, but then it was getting pretty old, so last apring I bought a pontiac and now I am only working thiptytwo hours a week, it keeps mo humping to meet the paymonts."
	I: "I guess thore were a good many of them that bought cars and homes on the etrength of the work that wae going through last yoar that were disappointed. I have a friend that went in protty heary on a home. I don't know if he will be able to make it or not. It looks doubtful."
	E: WOh, I am not going to lowe anything by it, but it will Juat mon that I will have to be more careful sonewhere elso. I Just will have to go without some of the thinge that go with a car and be aatisfied until we get more work to do."
	I: "Sometimes that is easy to eay, but hard to do."
EXPOSITION	I. laughing: ${ }^{m} \mathrm{O}_{\mathrm{g}}$ I will be able to do it all right. (Pulling his pay slip out of his pooket) Let's see. This week I got twenty-thre dollars and then they take out a couple of dollars for stock. Gee, that leaves me twonty dollars. A fellow can get along on that all right."
F	I: "Yes, unlean he has got particularly heavy expenses, he can get. by on that. I happoned to meet an old acquaintance of mine the first of this weok and he was tolling mow mach money he wan spending. I anked him how he happened to be getting so reckiess all of a sudden and then he told me that he was going to be married Saturday."
?	I: Whell, then he will have more exponses to figure on than I have with wior. I don't think I would figure on getting merried at a time like this unlese I had a pretty good bank acoount on the side."

mer

w

MH

	E: "Woil, I am satisfied. I don't think there is anything to kick about hore."
COMMENT GIVEN BEFORE	It "The only thing you could mention would be a little more money."
No Rating	E: WTes, I would likt to get a raise now and then, so that I would be rated about the same as the other men that are doing the kind of rork I am doing. I suppose that will work out in time."
+	I: Mo doubt it will. It usually does. I think you might ae well oull it a day now. I will walk back to your departmont with you and see if I can get another man." (on reaching the departmont we met the supervisor and he said: (Tell, how did you 1ike it?')
SALUTATION	E: "It is all right. We had smokes and everything up there.
No Rating	I: Woil, I cortainly enjoyod riaiting with you, and I om mighty glad I mot you."
	(5: Wroll, thanks. I amgled I mot you, too. Gooibyo."

```
Number of Unfavorable Comments = 8
            Total Number of Comments =10
                                    Index = 8/10 =.80
```

1
$1!$

[^0]The documents in Box 10 of the original records appear on this film as parts of Box 4 and Box 7.

[^0]: min
 2-16-51

