A MATHEMATICAL INDEX FOR INTERVIEWS February, 1931

February 19, 1931.

DON'T DISCLOSE IDENTITIES

From the beginning of these studies, the identities of the persons under study have been kept confidential. We look to you to carry on this trust. Please guard the privacy of the persons involved by substituting fictitious names, or code symbols for real names.

- 6088-1:

For some time, we have looked at the interviewing method as a means by which we could get a general idea of employees' mental attitudes, and with this knowledge would be able to discover differences between groups of employees. In the past, we have been unable to make much progress in this direction, due largely to the fact that no numerical method has been available whereby we could classify each interview as an entity. The percentages of favorable and unfavorable comments have been calculated for individual departments, but these comments pertain to a particular subject or group. This reflects little difference in the mental attitudes of the individuals. What is needed is a method of evaluating objectively the general tone of the interview so that these evaluations can be compared. A method by which this might be accomplished was suggested by Dr. Henderson during his recent visit, and the following paper reports the results of a study based on his suggestion.

The method suggested was to determine a mathematical ratio between an employee's favorable and unfavorable comments, with the thought in mind that this would give us an index (expressed mathematically) of the tone of the entire interview. If a process of analyzation could be formulated, which developed sufficiently explicit criteria, all interviews could be evaluated with compatible results. This method should give rise to a statistical procedure having sufficient validity to warrant its use.

gested a simple formula for arriving at a mathematical index, which could be expressed as follows: I = where "Y" represents the number of unfavorable comments made by the employee, and "Z" the number of favorable comments.

After a rather thorough conference discussion of this proposal among members of Department 6088-1, it was decided to have four interviewers analyze the same one hundred interviews, selected at random, to determine how much variation there would be in the scores of the different individuals making the ratings. It was agreed that this was to be done to develop a tentative method of analysis.

The group chosen for the analysis, realizing that comments were not of equal importance to the interviewer, suggested two methods by which these might be weighed. The first was to assign numerical values to the comments, which would indicate their relative importance. These values varied from 1 to 10, which meant that a

In educational work, the grading of examination papers has always been a point of great discussion, and pedagogists have spent considerable time in attempting to standardize the grading systems in this field. This can be done only to a certain point, as the judgement of the individual graders must be taken into consideration. In order to arrive at comparible results, standard grades must be determined by applying factors to the grades given by each instructor, which allow for the tendencies to grade higher or lower than the norm.

Our problem was very similar. We had a definite formula in which we substituted values, but these values were, in themselves, dependent to a certain extent upon individual opinion. It was necessary, therefore, to calculate standard scores for each of the four hundred ratings before we could determine the correlation coefficients. This was done by obtaining the actual deviation of each of the raw scores from the mean score of the analyst assigning that particular rating, and dividing these by the calculated standard deviation (o) of the same analyst. Scores computed in this fashion were numerically compatible; the variable factor of differences from the norm was accounted for.

After the effect of this factor was eliminated, the standard scores of each analyst were plotted against those of every other analyst, and the Pearson Coefficients of Correlation determined. These coefficients ranged from .63 to .82, a correlation that was significantly high. A table showing the standard scores, and the six correlation graphs with the Pearson Coefficients are given in the appendix

After the completion of the calculations, the group which performed the analysis again met, and suggested the following method of analysis in determining the index of an interview:

- 1. The interview should be read carefully. This gives a general idea of the contents, and in many cases, statements may be evaluated by considering explanatory matter which follows the initial comment.
- 2. The subjects which the employeer wishes to talk about are graded and weighted according to their seeming importance to the employee. All subjects, therefore, bear a ratio to each other, and the rating assigned should show the degree of difference existing in them. The analyst must not rate a subject by considering the effect upon himself, but

must be guided by what the interviewee himself states.

In the latter part of the appendix, we have included an interview on which the index has been calculated. Assigned values of the comments, and marginal notations are found at the left of the interview.

We conclude from this study that this particular method has merit, as the results clearly indicate that it lends itself, and is adaptible to a statistical procedure. Before recommending its adoption as a standard procedure for our work, however, we believe that a larger sample should be analyzed.

- 6088-1B.

BL

APPENDIX

ANALYSIS OF 100 INTERVIEWS

		Rating		¢	Ac	tual Dev.			•	Standard		
					.499	.536	.491	.569	.224	.207	.246	.195
	1	2	3	4	1	2	3	4	1	2	3	4
Int.					Score	Score	Score	Score	Act.D.	Act. D.	Act. D	Act. D.
No.					- Mean	- Mean	- Mean	- Mean	S.D.	S.D.	S.D.	S.D.
1	• 50	• 50	•43	.61	+.001	036	061	+.041	+.004	174	248	+.210
2	• 55	•60	•43	.64	+.051	4.064	061	*.071	4.228	4.309	248	4.364
3	•86	•66	1.00	. 88	♦.361	4.124	4.509	4.311	41.611	4.599	+2.068	41.594
4	•5≳	.62	• 54	.61	+.021	+.084	♦.049	4.041	→.094	4.406	*.201	4.210
5	.47	.22	•45	.57	029	066	041	+,001	129	-,319	167	. 005
6	•44	.29	•90	.44	059	096	4.409	-,129	-,263		-1 ,662	-,662
7	.42	.50	•45	•55	079	116	041	019	-, 353	561	167	097
8	.71	.85	•77	.60	*,211	*.314	·.279	+.031	+.942	+1.517	*1.153	*. 159
9	• 50	•50	•50	•60	*.001	-,036	4.009	+,031	4.004	174	4.037	4.159
10	.95	.86	.71	.92	+.431	+,521	+,211	+.351	+1.925	+1.565	4,892	-1.427
11	.91	1.00	.91*	• 96	+.411	+.464	+.419	+.391	+1.854	-2:242	+1.703	42,005
12	.62	.67	• 53	.80	*.121	*.134	4.039	*.251	+.540	4.648	*.158	41.184
13	.16	.12	.12	.29	539	416	371	279	0 1.513	-2.010	-1.508	-1.430
14	• 50	.20	•30	.29	*.001	356	191	279	004	-1.625	~.777	-1.430
. 15	.64	.62	•58	.82	+.141	+.064	+.089	1.251	4.630	4.396	 562	+1.287
16	.45	.42	.57	• 50	049	116	4.079	069	219	561	+.321	354
17	.01	.22	•00	.25	489	316	491	315	-2.192	-1.528	-1.996	-1.614
18	. 5 8	•58	•50	• 55	119	+.044	+.009	019	531	+.213	+. 037	097
19	.55	.95	.20	.41	149	+.414	291	159	665	4.200	-1.182	816
20	.38	•50	.25	.60	*. 081	036	241	+.031	+.362	-,174	979	4.159
21	.77	. 56	.77	.60	4.271	4.024	4.279	4.031	+1.209	4.116	41.133	4.159
22	.61	.53	.47	•70	4.111	006	021	4.131	+.496	029	085	4.678
23	.66	•50	.69	.73	4.161	036	4.199	+.161	4.719	174	4.809	4.826
24	. 50	.33	.25	•56	4.001	206	241	009	4.004	996	979	046
25	.69	.67	.75	.65	4.191	4.134	4.259	4.081	4.853	4.648	41.053	4.415
26	.60	.55	•50	.64	4.101	+.014	4.009	4.071	4.452	4.068	+. 037	+,364
27	.16	. 33	.17	.37	339	206	521	191	-1.515		-1.305	979
28	. 57	.60	.57	.57	4.071	4.064	4.079	4.001	4.517	4.509	1.321	1,005
29	.66	.71	.71	.63	4.161	4.174	4.219	4.061	4.719	4.842	4.892	4.313
50	.83	.77	.75	.75	4.351	4.254	4.259	4.181	41.478	41.150	41.053	1.928
51	.09	•88	.85	.92	4.409	4.344	4.359	4.351	41.828	41.661	+1.458	+1.427
32	-71	.64	.25	.75	4,211	4.104	241	4.181	4.942	4.503	979	4.928

ANALYSIS OF 100 INTERVIEWS

		Rating	•		_Ac	tual Devi	lation		•	Standard	Score	•
			•			Megn		••		σ	~	
***		÷			.499	.536	.491	.569	.224	.207	.246	.195
	1	&	3	44	<u> </u>	2	3	4	. 1	2	3	4
Int.				, , , ,	Score	Score	Score	Sco re	Act. D.	Act. D.	Act. D.	Act. D.
No.			.,		- Mean	- Mean	- Mean	- Mean		· S.D.	S.D.	
33	.46	.52	.68	.61	⇔₄039	016	4.189	4.041	174	 077	4. 768	4.210
34	.98	-88	.82	1.00	4.421	1.284	4.329	4.431	41.876	41.378	41.338	42.201
5 5	. 80	.77	.72	.81	4.301	4.234	4,289	4.241	+1.343	41.130	4,932	41,237
36	.58	.75	.75	-83	ቆ ₄081	4,214	4.259	4.261	4,362	41.033	41.053	41.338
57	.45	•50	•50	•50	÷.069	036	4.009	069	308	174	4.037	354
5 8	.68	.76	.83	.66	4.181	4.224	4,339	4.091	4.808	41.088	41.378	4.466
39	. 55	.75	.75	.55	→.169	4.214	4,239	-,019	754	41.033	4.972	097
40	.75	.85	.20	.80	4.251	4.514	291	4,231	+1.121	+1.518	-1,182	+1,184
41	25	.40	.00	•50	249	136	491	069	-1.111	-,657	-1.996	 354
42	.57	-50	.25	.82	4.071	036	241	4.251	4,317	-,174	979	\$1,287
45	466	•70	.67	.66	4.161	4.164	4.179	4.091	4.719	4.792	4.728	4.466
44	.70	80	.75	.57	4,201	4.264	4.259	4.001	4.898	41.274	+1,053	4.005
45	-56	. 59	•54	.46	4.061	4.004	4,049	109	+,272	4.019	+.201	559
46	- 50	. 55	.57	.60	4.001	4.014	4.079	4.031	4.004	4.068	4.321	4.159
47	.14	.37	.00	.31	-,359	166	491	-,259	418602	-,802	-1.996	-1.327
48	.25	50	.60	•70	249	036	+.109	4.131	-1,111	174	-,443	4.672
49	. 33	.60	• 50	•58	169	1.064	4.009	4.011	754	+.309	4.037	4.056
50	. 46	.63	• 33	.60	059	4.094	161	4.031	174	4.454	4.654	4.159
51	.66	.70	. 43	•70	4,161	1.164	-:061	4.131	4.719	4.792	1.248	4.678
52	.66	.62	• 50	.71	4.161	4,084	4.009	4.141	4.719	4.396	4.037	4.725
53	•78	.85	.90	.66	4,281	4.294	4.409	4.091	41.255	+1.421	+1.662	+.466
54	•00	•00	.00	•00	-,499	536	-,491	-,569	-2.223	-2.589	-1.996	-2,919
55	.77	•71	.82	.80	4,271	4,174	4,329	4,231	41.209	4.842	+1,338	+1,184
56	.66	,64	.66	.82	4.161	4.104	4.169	4.251	+.719	4,502	4.687	+1.287
57	• 50	. 56	• 57	•30	4.001	4.024	4.079	269	4.004	4.116	4.321	-1.380
58	.20	.28	.71	, 33	-,299	-,256	4.219	239	-1.335	-1,236	892	-1.286
59	,50	•55	.46	.47	4.001	006	031	099	4.004	029	126	-,507
60	,25	,45	.30	•55	249	-,106	191	-,019	-1.111	-,512	777	097
61	.30	• 37	.10	• 35	-,199	166	591	-,219	-,889	802	-1.588	-1,122
62	.00	•00	•00	•00	-,499	536	-,491	569	-2.223	-2.589	-1.996	-2.919
63	.72	.68	.77	.70	4,221	4,144	4.279	4,131	4.988	4.696	41.133	4.672
64	.14	.22	.20	,11	÷.559	-,316	291	-,459	-1.608	-1.528	-1.182	-2.347
65	.66	.50	. 33	.50	4,161	056	-,161	069	+.719	174	654	-,354
66	•70	.56	.71	•70	+.201	1.024	+.219	+.131	+.898	+.116	+.892	+.672

ANALYSIS OF 100 INTERVIEWS

		Rating			Λ.	tual Dev	iation			Standard	Score	,
· .		142 9 1115			A	Mean		•		- vandar d	- DOOL B	
		•			.499	.536	.491	.559	.284	.207	.246	.195
	1	. 2	3	4	1	2	3	4	1	2	3	4
Int.					Score	Score	Score	Score	Act.D.	Act.D.	Act.D.	Act.D.
No.					- Mean	- Mean	∸ Mean	- Mean	s.d.	s.d		
67	.62	-67	. 50	•73	.121	+.134	4.009	+.161	∔.54 0	4.648	4.037	∔. 826
68	• 57	.59	- 53	•57	4.071	4.054	4.039	+. 001	4.317	4.260	4.158	4,005
69	.40	.50	.25	.66	099	036	241	4.091	442	174	979	4.466
70	. 36	. 50	• 50	.37	139	036	4.009	199	621	174	4.037	-1.021
71	.44	- 58	.44	.66	059	016	051	1.091	263	077	207	+,466
72	.41	.42	• 56	. 42	089	116	÷.069	149	397	561	4.280	764
73	.25	• 33	•00	.46	249	206	491	109	-1.111	996	-1.996	559
74	.83	.67	.67	.83	4.331	4.134	4.179	4.261	41.478	+.648	4.728	41.338
75	.14	.28	.25	• 36	359	256	241	~.209	-1.602	-1.236	979	-1.071
76	1.00	1.00	-80	.66	4.501	4.464	4.509	4.091	42.236	42.242	41.256	4,466
77	.66	• 50	. 57	.71	4.161	036	4.079	*.141	4.719	174	4.521	4.723
78	.25	.26	•10	•35	249	276	391	219	-1.111	-1.332	-1.588	-1.122
79	•40	.44	50 *	.40	099	096	4.009	169	442	464	4.037	868
80	. 43	.17	.43*	• 50	069	366	061	069	308	-1.768	248	554
81	. 43	.43	. 38*	•71	069	106	111	4.141	508	512	452	1.723
82	30*	.67	.50	.50	199	4.134	4.009	069	889	4.648	4.037	~.354
83	.29	.33	.29	.42	÷.209	206	201	149	933	996	817	764
84	. 33	. 57	.62	.66	169	+.034	+.129	4.091	754	4.164	4.524	+.466
85	,44	.50	•00	•40	059	036	491	169	263	174	-1.996	868
86	. 30	.45	.40	. 33	199	106	091	239	889	512	369	-1.226
87	.29	.40	.44	.57	209	136	051	4.001	933	657	207	4.005
88	.88	.80	.66*	1.00	1.321	1.264	4.169	↓.451	+1.432	+1.274	4.687	42,201
89	•50	. 50	•43*	.50	‡.001	036	061	069	4.004	174	248	354
90	.89	•90	1.00	.88	4.391	+.364	4.509	4.311	+1.745	41.758	42.068	41.594
91	.64	.66	.50	.61	¥.141	+.124	4.009	J.041	4.650	∔. 599	4.037	+.210
98	.14	.30	,25	•43	359	236	241	139	-1.602	-1.139	979	713
93	.60	•55	.50	,44	4.101	₹.014	4.009	129	1.452	1.068	+.037	662
94	•54	• 57	•35	.37	+.041	+.034	161	199	+.183	+.164	654	-1.021
95	.27	.36	.57	•35	229	196	4.079	239	-1.023	947	4.321	-1.226
96	• 35	.60	.60	.50	169	+.064	4.109	069	754	+.309	+.445	354
97	.51	.25	.14	.47	189	286	351	099	844	-1.381	-1.426	507
98	•55	.55	,85	.60	4.051	→.288 →.014	4.459	+.031	4.228	+. 068	41.782	4.159
₹99	•88	.85	.87	•80	∔.3 81	4.294	4.579	+.231	41.701	41.420		
100	.66	.75	•77	.66	+.161	1.214	4.279	4.231	÷.719	+1.420	+1.540	+1.184 +.466

^{*} Analysts' Interview.

	X VAA	VABLE =	STANDARD S	ecor es	ARALY	ST # 3.							NUMBER OF CASE	5 (N) = 100		The second second		>	(VARI	ABLE	= st	ANDARD S	CORES	AN	alyst	# 3		
	\$ \\ \tag{2}\$	770-00-46;1 s								d, f	d, fd,		$\sum fd_x + = 68$ \times $\sum fd_x - = 178$ $\sum fd_x = -104$	$\Sigma fd_y + = 85$ $\Sigma fd_y - = 164$ $\Sigma fd_y = -79$					SAME F	REQUENCI	I) .1							
\$1.897\$2.242						1			3	5	15 7:	' 5	$C_{x} = \frac{\sum f d_{x}}{N} = 1.04$ $C_{x}^{2} = 1.08$	$c_{y} = \frac{\sum f_{c}d_{y}}{N} =70$ $c_{y}^{2} = .61$		*1.8 6	97‡2.242							1	2			
+1.553+1 896 +1.209+1 552 +.865 +1 208 +.581 + 864			100	10					5 8 6	3	20 80 24 71 12 24 14 14	4	$\frac{\sum f d_{x}^{2}}{N} = \frac{976}{100} = 9.76$ $\frac{\sum f d_{x}^{2}}{N} - C_{x}^{2} = 8.68$	$\frac{\sum f d_y^2}{N} = \frac{941}{100} = 9.42$ $\frac{\sum f d_y^2}{N} - C_y^2 = 8.80$	us & a linii	+1.20	53 †1. 896 99 †1. 552 5 † 1.2 08			1	1		3 5	3 4	8 1 1 1 1	8		
#.177 # 580 167 # 176 511 - 168			1 . Ma	01 01 02 1					12	0	10 10	0	$\sigma_{x} = \sqrt{\frac{\sum f d_{x}^{2}}{N}} - C_{x}^{2} = 2.04$ $\sum XY + = 787$	$O_{x} = \sqrt{\frac{\sum f d_{y}^{2}}{N}} - C_{y}^{2} = 2.95$ $O_{x} O_{y} = 8.67$	San Grant	167			1		1	1 4 2 3 4 2	2 3	1	1		7.	
855 - 512 -1.199- 856 -1.555-1.200									8 11 5	5	24 73 44 176 15 73	'6 '5	$\sum XY - = 0$ $\sum XY = 727$ $\sum XY = 7.27$	$r = \frac{\sum XY}{N} - c_x c_y$ $= .74$	14.6 E = em	-1.19	518 99- 856 55-1 200		2 2	2 1		5 1 5 1	1 1					
-1.887-1.554 -2.251-1.888 -2.575-2.232 -2.919-2.576	83		g'						3		24 144	7	$C_{x}C_{y} = .82$ $\frac{\sum XY}{N} - C_{x}C_{y} = 6.45$	P.E. = $.6745 \frac{1-r^2}{\sqrt{N}} = .05$ $r = .74 \pm .05$	XMA	-2.23	37-1.554 31-1.888 75-2.232		3)							
f		2 3 11				6 4		\	50	JBJE	C75		DETERMINATION OF DISSATISFACTION	QUOTIENT (100 INTERVIEWS).	Σ	Y		20 15	11 9			5 0 12 59						
d_x fd_x fd_x^2	46	6 5 4 12 15 44 72 75 176	15 20 17		8 16	5 4 18 16 54 64	10		co				CHECKE HEET FOR COMPUTATION	V OF PEARSON'S T		XY			7 2	1		9 39 27 156						

. *

	-	X	VARII	1 <i>8LE</i>	= S1/	NDARD	SC OR E S		ANAL	rst 🏄										^	WMBEH	P OF CA	WES (1	V) = 100		(a)			X	VAF	RIABLE	= s1	ANDARD	SCORES		AN	alyst / 4		
			IR AS	REQUEN	CI S S										f	d,	fd,	fď,	Σfc	1 x + =	117	. ×		Σfd , + =		Ý			s	AME AS	PREQUEN	.1							
																			***	d _* - =	100			$\Sigma fd_{y} - $						*									
																	*		$\sum f_{c}$	d =	17			$\Sigma fd_{y} =$	= 24														
																	,			$=\frac{\Sigma fd}{\Delta I}$				$c_{\gamma} = \frac{\sum f_{c}}{N}$	d														
																			Cx	= N	- = .17			$C_{y} = \overline{N}$	24														
\$1.897	2 242														2	6	12	72	C_{x}^2	= .029				$C_{\nu}^2 = .058$			÷1.89	712 242						1	ī	1			
+1.5534											11				6	5	30	150	Σf	$\frac{d_x^2}{J} = \frac{78}{10}$	35	7 24		Σfd_{ν}^{2}	860 100 = 8.60		\$1.55	3+1.896							1	. 1	2 2		
‡1.209 ‡	1 558														7	4	28	112			٠				the second secon		\$1.2 0	9 + 1.552						1 1		2	1		
∔. 865 ∔	1 208					(1)		11 111							7	3	21	63	$\int \underline{\Sigma} d$	$\frac{\mathrm{fd}_{\mathbf{x}}^{2}}{\mathrm{d}_{\mathbf{x}}} - c_{\mathbf{x}}^{2}$	2 = 7.80) 1	*	Σfd _x N	$C_{\nu}^{2} = 8.542$		♣. 865	1.208						2	8 ;	3			
+.521 +	864				**		UMI	um I			ř				15	2	50	60] . '	XI.				*.	•		.521	+ .864					1	6	5]	. 2	,		
¥.177 ¥	520														12	1	12	18	$\int_{\mathcal{F}}$	$=\sqrt{\frac{\sum f_0}{N}}$	d*	= 2.79		$\sigma_{z} = \sqrt{2}$	$\frac{\text{Efd}_{Y}^{2}}{N} - C_{Y}^{2} = 3.$	92	¥.177	1 .520				1 8		4 .2	1	2			
167 \$	176			# '== //		U-	JASSEL-			of the second second		70.4							~x	VN	/ ×				N		167	+ .176			8		8	4 2					
511 -	168						v ***								13	1	15	18	$\Sigma \times$	(Y+=	= 653	•		$O_X O_Y = 8$	3.15		511	168				2 2	3	2 5	1				
855 -	51.8									<u></u>			, "Y		8	2	16	38		(Y-=				Σ	$\frac{XY}{C_{\star}} - c_{\star}c_{\star}$	1	855	518	**			1 1	8	5 1					
-1.199-	856														10	8	30	90	LΣX	(Y =	= 653	·		r= 1	$\frac{\sqrt{-c_x c_y}}{\sigma_y} = 0$	80	-1.19	9856	·			1 8	2	2	1	-			
-1.553-	200			<u> </u> " '						<u></u>			•		3	4	18	48	Σ	$\langle \Upsilon = 6.$.53			σ_{x}	σ_{r}	Ò	-1.55	3-1.200				1							
-1.887-	1 554														4	5	20	100	1	1				PF =67	$\frac{1-r^2}{\sqrt{N}} = 0$	024	-1.88	7-1.554		1	1	1 1							
-2.231 -	1 888							 		 					3	6	18	108		$C_{\gamma}=.04$		•			\sqrt{N}		-2.23	1-1 888	1	1	1				-				
-2.575-	2 252					,		1		<u> </u>									Σ	$\frac{\langle \gamma \rangle}{1} - c$, . c =6	49		γ=.80	+ .024		-2.57	5-2.232	<u>.</u>				-	-				-	_
-2.919-	2 576			-				1 - 1				_	-						1 1	1	XUY — V	- 	·	1			-2.91	9-2 576			*		1						
						1	7 1	 	-	-			`				.·		<u> </u>																+				
f		1 0	2 1	7	7 8	.10	18 16	10	7 8	2	3				1511	B JE	ECT.	5		DETERMINA	TION OF	dissatisf	ACTION QU	UOTIENT (100	interviews).	2	IY	+ 5 - 0	29 21	15	27 12		1	2 0 17 11	11	0	•		
d_{\star}		8 7	6 5	4	5 2	1	0 1		5 4	5	6				1				- 					•			-~	+ 5	29 21	15	26 5						·		
fd _*		B boil	12 5	288	21 16	10	16	80 2	21 54	10	18			·	COI	MP	UTE	D B	Y			CHEC	CKED	<i>BY</i>	DATE 2-2-	-34 2	_					8	6	15 11	15 1	.9			
fd_x^2	+	+ {*				+=+		+	=+=	+	+	_	-				· A	ATA	SHEE	FT FOR	R COM	PUTAT	TON O	F PEAR	SON'S T		EXY	+ 50	145 84	59	52 5	8	12	45 44	75 11	4			

		**************************************	X	VARI	ABL	6 =	STANI	ARD SC	or s s			INAL Y	3T #4										NUMBER OF C	CASES	(N) = 100			<u> </u>	XV	ARIA	BLE	= 31 7	ANDARD	SCORE	LS		analys	ı fı.		
			\$ (S)	NE AS	RUM	DERCE ES											f	d,	fd,	, f	ď,	Σ	Efd _x + = 114	K	$\Sigma fd_y + = 110$				SWA	3	SQUENCI F*- XIS	18								
1																						k	$fd_{x} - = 106$		$\Sigma fd_y - = 109$															
																						Σ	[fd _x = 8		$\Sigma fd_{v} = 1$															
																							Σfd.		$\sum f_{cd}$.															
																						c,	$x = \frac{\sum f d_x}{N} = .06$		$c_{y} = \frac{\sum f d_{y}}{N} = .01$															
	ka gorto												•				2	6	12		72	C;	$c_{x}^{2} = .006$		$C_{\nu}^{2} = .0001$	2	 1.897 2	242												
ľ	41.89742																	****			***						1.555 ‡1										9 1			
I	+1 553 + 1									- n		a a					3	5	15		75		$\frac{\Sigma f d_x^2}{N} = \frac{884}{100} = 8.84$		$\frac{\sum f d_{y}^{2}}{N} = \frac{791}{100} = 7.91$	1 5											2 1			+
Γ	+1.209+1									i i	11	. v. i					7	4	**************************************	3 1	TR	ľ					1.20941									8		8		-
ľ	.865 11						1		111 111	- In	1 1						6	3	18		54		$\frac{\sum f d_x^2}{N} - C_x^2 = 8.234$		$\frac{\sum f d_{y}^{2}}{N} - C_{y}^{2} = 7.9099$	· /	F.865 41							1 2		1	2			+
	+.5 21 +						1	CNJ I	ı		II I	-					18	3.	24		48					22	+.521 +						1	4	3	2	1 1			+
	1.177 +					le Fair			N. J.	*						· ·	15	1	13		13	C	$\sigma_{x} = \sqrt{\frac{\sum f d_{x}^{2}}{N} - C_{x}^{2}} = 2.87$		$O_{y} = \sqrt{\frac{\Sigma f d_{y}^{2}}{N}} - C_{y}^{2} = 8.81$	₩036	1.177 +					1		5 2			2		1	+
	167 ‡	178						HUISE	() ()								14	0					ing a grant of the state of the	***************************************			167 ‡						1							+
١	511 -						15										17	1	17		17		XY + = 608		$O_{x} O_{y} = 8.06$		511 -				* 5	1	3	4 2	3		1			<u> </u>
	855 -	512			1	1 101											9	8	18		36	1	XY - = 0	*. * •	ΣXY	80	855 -	518			8 1	1	2	2	1					+
	-1.199-	856				11											6	3	18	5	34	2	$\Sigma XY = 602$		$r = \frac{\sum XY}{N} - c_x c_y = .75$	1	-1.199-	856	· · ·		1 1	5		1				<u> </u>		1
	-1.555-1	200					l i								4		6	•	24	8)6	Σ	$\Sigma XY = 6.08$	- ,	$\sigma_{\mathbf{x}} \sigma_{\mathbf{y}}$	481	-1.555-1	200	1	1	1 8		1							
	-1.887-1	554			ę;					•							2	5	10	٩	xo		N and the second	t.	DF -6745 1-72	18/	-1.887-1	554			1		1	<u></u>						1
	-2.23 -1	888															1	6	6	8	56	C,	$C_{x}C_{y}=0$		P.E. = .6745 $\frac{1-r^2}{\sqrt{N}} = .050$	Z.	-2.251-1	888			1									<u> </u>
	-2-575-2	232							,								0	7	0		0	5	Σ Υ Υ				-2.575-2.	232							•					
	-2.919-2	576 II															8	8	16	18	8] =	$\frac{\sum XY}{N} - c_{x}c_{y} = 6.08$		$\gamma = .75 \pm .036$		-2.919-2	576 2		49										
																		·			,		• •		•	V. Books	ब *								-					
1	f																	1		Y				,		2~	, +	7 13	19 13	25	15	12	2 (0 0	0	0	0			
-	<u>'</u>	2	1	0	1 7	8	8]	10 18	16	10 6	8	2	.5	+ -			50	IBJ.	EC	75	•	,	DETERMINATION OF DISSATISTA	ACTION QU	OTIENT (100 INTERVIEWS).	21		0 0	0 0	1	5	14	15 1	5 25	5	4 1	6			
	d _x	8	7	6 :	4	5	2]	L O	1	2 5	4	5	6	<u> </u>			\sim	AA ES	/ / 7	ED	_B v	, I	CHE	FOKEO	BY	ΣY	. +	7 15	19 15	24	18					-	_			-
	fd _x	16	17	0 :	28	24]	6 10		.16	20 18	58	10	18					معمرر - ,		L 2	UP		CI II	·				40 ==					15 1:					+-+		+
I	fd_x^2				118								==						4	DAT	7A S	SHE	EET FOR COMPUTA	ITION	OF PEARSON'S T	ΣΧ	(Y +	42 65	76 59	48	18	+=	26 39	9 98	25	24 1	12			+

				XM	RIA	3LE		STAN	DARD	S C0	35 3		4	ANI	TÁS	· #4			district in										NUMBER OF C		(N) = 100	111	- a	ing en			X.V	ARIA	BLE	=	STANI	ARD S	CORES			ANAL	st į	μ.		
						3 ·	50 (C) E31	CTES IS													1		d,	f	d , .	fc	1,		$\Sigma fd_x + = 114$		$\Sigma f d_y + = 185$	Y						SAACE A.S		J NC II	3									
																1													$\Sigma fd_x - = 107$	· · ·	$\sum f d_y - = 116$																			
																									•			2	$\Sigma fd_{x} = 1$		$\Sigma fd_{\gamma} = \gamma$					1													* 3	
											,																		$C_{x} = \frac{\sum fd_{x}}{N} = \frac{7}{100} = 10$,	$\sum fd_{y}$		'n																	L
■ 33																								*				•	N 100 .	•	$c_{\gamma} = \frac{\sum f d_{\gamma}}{N} = \frac{7}{100} =$.07	1						•											
IST	+1.897	12 248													1							2	. 8		12	7.	8		$C_{\rm X}^2 = .005$		$C_{\gamma}^{2} = .005$		LYST	‡1.89 7	12 248	3										2				; [
TANK.	+1. 555	41 896														1						4	\$		20	10	0		$\sum f d_x^2 = 827 = 8.27$		$\frac{\sum f d_y^2}{N} = \frac{907}{100} = -9.0$	and the second	Na Na	‡1.5 53	41 896	5		,		1	-	1	1				1			
	+1.209	\$1 552														l .			Y			6	4		24	9	6		N 100				•	+1.209	1 552	2							2	2	1		1			L
	+. 865 ·	41 208				•								J								.5	3		59	11	7		$\frac{\sum f d_{x}^{2} - C_{x}^{2} = 8.265}$		$\frac{\sum f d_{y}^{2}}{N} - C_{y}^{2} = 9.065$	4.00		1.865	‡1 208	3						4	5 2	1	5					<u>-</u>
	+. 581	1 864							1						11	•						8			16	5	2		N.		N		S	. 521	₽ .864						1	5	1	*		1				İ
CHES	*.177	\$ 520					[1		J.														-1		12	1	2		$\sigma_{\mathbf{x}} = \sqrt{\frac{\sum f d_{\mathbf{x}}^2}{N} - C_{\mathbf{x}}^2} = 3.87$		$\sigma = \sqrt{\Sigma f d_x^2 - c^2} =$	5.01	CORE	+.177	520	0			8	2	2	2	1 2		1					į.
8	167	1 176				***														1/172		8	0						~ ~ N ~		$\sigma_{y} = \sqrt{\frac{\sum f d_{y}}{N}} - c_{y}^{2} = 0$		RD S	167	+ 176	8			2	1	5	Ğ	2 5	3	<u>.</u>					٠.
3		- 168													•		,¢					9	i		9		9	2	$\Sigma XY + = 554$		$O_X O_Y = 8.64$		LEND	511	- 166	В			•1		2	1	3 8							-
5	875	- 512						ı		X ·												5	8		10	2	0		$\Sigma XY - = 6$		ΣΧΥ	Parameter Burkhann	6 0	875	- 51.2	8			1 1	1	1	1								<u>_</u>
	199	- 876	1				111												1.			1	3		3 3	9	9		$\sum XY = 548$		$r = \frac{\sum XY}{N} - c_x c_y = \frac{\sum XY}{\sigma_x \sigma_y} = \frac{\sum XY}{\sigma_x \sigma_y} = \frac{\sum XY}{\sigma_x \sigma_y} = \frac{\sum XY}{\sigma_y = \frac{\sum XY}{\sigma_y} = \frac{\sum XY}{\sigma_y} = \frac{\sum XY}{\sigma_y} = $		m .	-1.199	876	5	1		1 1	8		8	1	2	1					-
705	-1.553	-1 200									t											3	4		12	4	8] ;	$\frac{\sum XY}{N} = \frac{548}{100} = 5.48$		$\sigma_{\mathbf{x}} \sigma_{\mathbf{y}} = \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}$. 63	781	-1.553	-1 200)			1 1	1										
	-1.887	-1 554				H			4						, , ,							2	5		10	5	0],	N 100 5.48	• •	DE -6715 1-Y2		10	-1.887	-1 554				8	-				<u> </u>						,
	-2.251	-1 888	11						3													7	6		42	25	2	1.0	$C_{x}C_{y}=.005$		$PE_{r}=6745 \frac{1-r^2}{\sqrt{N}}=$.04	7	-2.231	-1 888	3 . 2		1	1 1	1	1]	-
	-2.575	-2 232	Ü													:			•			-						,	ΣΧΥ			- 77) —	-2.575	-2 258	}													• ;	
	-2.919	-2.576																			1							=	$\frac{\Sigma XY}{N} - c_{x}c_{y} = 5.475$		Υ= .65 ± .04			-2.919	-2 576	3			,					_				-		<u> </u>
															· .				1				<u></u>		·			1						<u> -</u>	<u> </u>			<u> </u>												Ļ
	f		2	1 0	1	7	8	9	9	18	16	10	6	8	2	3			ľ			.	1	د مسور	<u></u>		·	•	TORRETAITH MEAN AW NECAS	TÖÐA AMT	CON QUOTIENT (100 INTERVIEWS).		Σ	Y	1	- 1	18 22	1 1			1		0 0	- 1	1					<u> </u>
ľ	d _*			7 6					1						,			 	1	1				IEC			•										0 0 18 22			6	10	18	9 6	5 31	+			-		ſ
ł	fd _*			/			一十		$\neg \uparrow$						-	5		-	+	+,	4	CO	ME	707	TE	D .	BY	_	CHE	CKED	DATE DATE		\sum_{i}	T	_				5	1	10	7	9 (5 51	 					_
-	Tax		16	7 0	5	8	4 1	8	•		16	10	18	58	.0	18			_		1								HEET FOR COMPUTA			:			+ 0	25	72 66	40					36 30							-

UNIVERSITY OF WISCONSIN - MILWAUKEE

We were introduced by the Section Chief.

It "How do you do, Mr. Employee. Do you feel like taking a little walk this morning?"

E: "Where are we going? Will I need my coat?"

It is not very cold outside. I thought we would go up to the little shack on the tracks east of the building here. You will only be outside for a moment. There is a fire in the stove there, so you will find it quite comfortable."

E: "Oh, that is all right. I thought maybe we were going up in the office. I didn't know whether to change my overalls and put on my coat or not."

I: "Oh, that isn't necessary. You and I will be out there all alone. Where has the other interviewer been going for his interviews?"

E: "I don't know where the other men have been taken, but last year, we just went over into the next section here and sat down on a box."

I: "Well, it would have to be a stormy day and then I could do that too, but this is just a little bit farther and much more comfortable. I know we are going to be alone and that is worth something."

Er "Yes, it sounds good to me." (Upon arriving at location.)

It "Well, how do you like this -- haven't I got a private office?"

E. laughing: "Yes, this is pretty good."

I: "I am sorry I cannot furnish you a rocking chair."

Et "Oh, this is good enough. I am not used to any chair at this time of the day you know."

It "That job keeps you fellows hopping most of the time, does it?"

Et "Yes, we are pretty busy. That is, we are when there is work. There is not a great deal of work now."

INTRODUCTORY MATERIAL

No Rating

SUGGESTED POLITE RESPONSE

No Rating

LACK OF WORK
Possibly neutral
at first glance.
Supplemented by comments
appearing later in man
the interview. Employee
rejects suggested answer of
interviwer's question.

"Y" Rating

UNIVERSITY OF WISCONSIN - MILWAUKEE

It "Just enough to keep you going regular time, is that it?"

E: "Yes, we are working our regular time, but there are a lot of machines that are idle. The work has dropped off quite a bit."

I: "I guess it has in a good many departments. You fellows work on the eight hour shifts, don't you?"

E: "Yes, that is about the only way we can do it in here."

I: "I wonder if I have it right. You hold one shift for a month."

E: "Yes, that is it. Four weeks to a shift, but we are only working four days a week now."

I: "Oh, I see what you are doing. Thirty-two hours for the week."

E: "Yes, that is it except that the night crew has thirty-seven hours."

I: "How does that happen?"

It "They have to clean up. There is a lot of work that must be done before the machines are allowed to stand, and they do that. Then the next shift that comes on Sunday afternoon at three o'clock. They start the machine and start the heat and work of that sort."

I: "Oh, I see. Then you can't just sit down to a machine and start to work on it."

E: "Oh ne. It takes about five hours to get started."

It "Then you like the eight hour shift first rate."

E: "Oh yes, it is all right. Of course, some shifts are better than the other, but as long as we are divided up that way, I don't think we have any kick."

It "Oh, there is no choice about it then. You have to take your turn on the shift."

E: "Well, sometimes you can get somebody to change with you. It just depends on the man. Some fellow may want to

EXPOSITORY MATERIAL

No Rating

SUGGESTED ANSWER

Employee expresses a definite opinion, however.

"Z" Rating

DH

work on the night shift for some reason of his own. If he gets one of the fellows on that shift to trade with him, why then that is all right."

- I: "They they allow that."
- E: "Oh, yes. The Foreman has no objection to that at all. Only you have to let them know so that they can make the proper arrangements with the payroll."
- It "I suppose there are plenty of them that would like to have that afternoon shift, aren't there?"
- E: "Well, that is one that I would like to get rid of."
- I: "Is that so?"

DISLIKES AFTERNOON SHIFT

"Y" Rating

- E: "That is the worst one for me. Of course, I get home in pretty good time, but by the time I get something to eat, I am ready for bed by twelve o'clock, but I can't seem to go to sleep after that."
- I: "I suppose that is because you have had something to eat, isn't it?"
- E: "I don't know what it is. I lay awake and don't have a good rest at all. I think the eleven seven shift is about the best one. It suits me anyway."
- I: "That means that you have your evening for anything that you might want."
- E: "That suits a young man just right. Of course, if a fellow were married, I suppose he would want to be home at that time."
- Er "Oh, no. I spent six years over in Department Dash, but they were sending that work East, so I had to find a job somewhere else. They transferred me over here."
- I: "It is pretty good, is it?"
- E: "Yes, except as I had to start in here as a new man."
- It "Yes, that is the way it goes when a fellow is on a new job. It is just like coming to the Company for the first time."

TRANSFERRING MEN AT STARTING RATE

Service Raises Z"Y" Value

> Authorizes our First Rating on Hours.

GANG PIECE WORK

"Y" Value

EXPOSITORY

No Rating

E: "But I had to take the starting rate for a new man over here."

I: *0h, I see what you mean. That wasn't so good, was it?*

E: "No. I thought they ought to transfer me at a better rate than that because the starting rate here is only fifty-three cents. In the next five years I got a two cent raise and then I got one this last year."

I: "Well, that compares with the other rates in the department, does it?"

E: "No, but most of the fellows that have been with the company as long as I have, are getting anywhere from sixty to sixty-five. I think a fellow's service ought to be considered when they make a change like that because with the hours we are working now, it is hard enough anyway."

I: "Your percentage helps out on that though, doesn't it, or is this work individual piece work?"

It were individual. I believe a fellow knows and works better if he knows just how much he is getting. When you have a large gang, there is always some who will lay down. That means that the fellow that does work hard, doesn't get all he earns."

I: "No doubt, there is some truth in that.... Is the work here such that it could be run on/Individual piece work basis?"

Et "Well, I suppose it could, but it would have to pay some men day work though."

I: "I have never been around in your department at all. I know nothing at all about the machines or the set up."

I: "The regular set up is three machines for a man, but they are trying out a new system now. I don't know if that is going to become permanent or not."

It "And how is that?"

E: "Some of the men are running four machines now."

DE

I: "That must keep them hopping."

Et "Yes, it does. Of course, if everything is running smoothly it is all right, but if the set ups come together he is going to come into trouble."

I: "And I suppose that depends on the size of the tool."

E: "Yes, and the size of the wire. On the small wire, they figure one set up for each shift, but on the large wire, you have more set ups than that, but they try to arrange it so that one shift doesn't have any more set ups than the other. That is where we lose time."

It "I suppose each man handles his own set up."

E: "Well, if a man is having trouble, he can call the break-down man in to help him."

I: "Then you have a man to help out in that case?"

E: "Yes, there is a man who is supposed to fix up breakdowns and work of that sort and will usually help a man out
if he is in trouble. If he happens to get a couple of set
ups at the same time or if he is having trouble with one of
the machines, then the breakdown man takes that machine while
the operator will handle the other one."

I: "Is the breakdown men on the gang or is he a day work operator?"

E: "Oh, no. He is a gang member just like the rest of us."

I: "I see. Well, that comes in pretty handy because when a fellow is in trouble, he has help there for him."

E: "Well, the breakdown man is usually busy. He has to keep the floor clean and see that the tools are on hand. He also checks up on the other supplies. They keep him busy all right."

I: "Well, it seems as though he would be quite a help if he attends to all his duties and lets the operator pay strict attention to his machines and his output."

E: "Yes, it ought to work out all right, but the trouble is, our earnings have dropped off."

MORE ESPOSITION

DE

.

EARNINGS

"Y" Value

I: "Just lately?"

- E: *Well, our percentages used to run around fifty all the time, but now it is down to thirty-five. One week we only have thirty, and that is pretty low."
- I: "Yes, indeed. There is quite a difference between thirty and fifty."
- E: "I don't know why the earnings dropped now. Of course, we are only working thirty-two hours. Do you think that would have anything to do with it?"
- I: "I am not familiar over here with the work to say, but I should think that by cutting the hours, your earnings per hour would increase. If you would spread the job out full time then it would cut the percentage, but if you cut the hours to fit the job, you don't keep the earnings up."
- E: "Well, that is what they say anyway, but there isn't enough work. That is why the percentage has dropped."
- I: "Well, they ought to know.".....
- E: "I guess they do. I don't know why it is. I know we are not making much money now."
- I: "Well, a fellow needs all of that he can get if he is buying a home."
- E: "Yes, or a car."
- I: "Then you have a car?"
- E: "Oh, yes, I have had a car for several years now."
- It "Well, they are pretty nice things to have, all right. It gives a fellow a chance toget around a little bit when he does have some spare hours."
- E: "Well, sometimes they are expensive, too."
- I: "I guess that is right. Did you get yours recently?"
- Et "Lest spring is when I got it. Then I had one before that. I had one of those old style Essex, but I got a new one now."

EM

- I: "Oh, it is an Essex then."
- a: "So you know all about them. Did you ever drive one?"
- I: "No, I didn't. I have no car."
- E. laughing: "I thought that the way you talk, you had been stung on an Essex, too."
- I: "You don't think much of them?"
- E: "Well, I don't think I got good service out of that one that I ought to, but then it was getting pretty old, so last apring I bought a Pontiac and now I am only working thirtytwo hours a week, it keeps me humping to meet the payments."
- I: "I guess there were a good many of them that bought cars and homes on the strength of the work that was going through last year that were disappointed. I have a friend that went in pretty heavy on a home. I don't know if he will be able to make it or not. It looks doubtful."
- E: "Oh, I am not going to lose anything by it, but it will just mean that I will have to be more careful somewhere else. I just will have to go without some of the things that go with a car and be satisfied until we get more work to do."
- I: "Sometimes that is easy to say, but hard to do."
- E. laughing: "Oh, I will be able to do it all right. (Pulling his pay slip out of his pocket) Let's see. This week I got twenty-three dollars and then they take out a couple of dollars for stock. Gee, that leaves me twenty dollars. A fellow can get along on that all right."
- I: "Yes, unless he has got particularly heavy expenses, he can get by on that. I happened to meet an old acquaintance of mine the first of this week and he was telling me how much money he was spending. I asked him how he happened to be getting so reckless all of a sudden and then he told me that he was going to be married Saturday."
- E: "Well, then he will have more expenses to figure on than I have with my car. I don't think I would figure on getting merried at a time like this unless I had a pretty good bank account on the side."

CAR

"Y" Value

EXPOSITION

EMH

FATHER

"Y" Value

C

- I: "Then you are staying at home?"
- R: "Yes, but of course, I have to turn something in on the expenses at home. My father isn't working steady now."
- I: "A good many of the older fellows have been caught in the layoff in different places."
- E: "Yes, that is it. My father is getting old now and you can't expect an old man to hold his job steady unless he is in some place like this and has been there for a long time. My father wasn't married until he was pretty well along in life and didn't settle down until he was married, so you really don't know what a steady job is, as far as staying a long time in any one place is concerned."
- I: "Then he waited quite a while before he built his home."
- E: "Yes, he was forty-one when he was married. Now there are six children in the family, so you can see it kept him hustling to meet expenses."
- I: "Well, that sure is enough. I suppose you are the oldest of the children."
- E: "No, there are two older than I."
- I: "Then you were born in Chicago?"
- E: "Yes, I have been here all my life."
- I; "Then you must have gotten a pretty good chance in school."
- E: "Well, I only finished the grades. I commenced work when I was sixteen, you know, to help things out at home."
- I: "Then this is your first job."
- E: "Yes. Well, I did have another job for about a month, but I didn't like that and I quit. Then I came out here and got started. I liked things here so well that I decided to stay."
- I: "Well, this isn't a bad place to work. I am pretty well satisfied, too, but I wandered quite a ways before I got here. I was born in Western Kansas."
- E: "Oh, then you have traveled quite a bit."

M

I: "Well, I haven't been around a great deal except when I came back here. Have you traveled?"

Et "No, I have never been west at all. I haven't been very far east either. I was over in Indiana and then I have been up in Michigan and Wisconsin a bit. I have been up in Illinois some, but I am going to take a trip some of these days."

I: "That will be a good way to break that Pontiac in, next summer. Give it a good try out now and then when vacation comes, give it a real workout."

E: "I have been thinking of that and if work picks up and I have a little money on hand, I guess that is what I will do. I think a fellow ought to get out and see what the country looks out away from home."

I: "So do I. If a fellow has any means of travel, he ought to take advantage of it."

E: "That is the way I feel about it. The Company gives you two weeks for a vacation anyway."

I: "That is it. We might just as well use it."

E: "I think that is mighty fine that the Company gives vacations. The stock plan is good, too."

I: "It certainly is. I noticed a while ago that you were taking money out for stock and I said to myself, this fellow is watching things all right."

E: "Well, a fellow ought to save a little money and that is about as good a way to save it as I.know. They take it out of your pay before you cash the check, and you never miss it. Then some day they will come around and say, 'here is your money.'"

I: "That is the way they do it and it is all right, too. Well, is there anything else that you have in mind that you want to talk over with me?"

E: "Mo, I am pretty well satisfied. I really haven't anything to say."

It "Well, it is saying a whole lot when one says that he is satisfied. We are glad to get that kind of a story."

COMPANY PLANS

"Z" Value

EMH

COMMENT GIVEN BEFORE

No Rating

SALUTATION

No Rating

E: "Well, I am satisfied. I don't think there is anything to kick about here."

I: "The only thing you could mention would be a little more money."

E: "Yes, I would likt to get a raise now and then, so that I would be rated about the same as the other men that are doing the kind of work I am doing. I suppose that will work out in time."

I: "No doubt it will. It usually does. I think you might as well call it a day now. I will walk back to your department with you and see if I can get another man." (On reaching the department we met the supervisor and he said: 'Well, how did you like it?')

E: "It is all right. We had smokes and everything up there."

I: "Well, I certainly enjoyed visiting with you, and I am mighty glad I met you."

E: "Well, thanks. I am glad I met you, too. Goodbye."

Number of Unfavorable Comments = 8 Total Number of Comments = 10

Index = 8/10 = .80

PMH 2-16-51 The documents in Box 10 of the original records appear on this film as parts of Box 4 and Box 7.