

 From the beginning of these studies, the identitiss of the persons under study have been kept confidential. We look to you to cary on this trust. Please guard the privacy of the persons involved by substituting fictitious name cade symbole for real nume.

AN INVESTIGATION OT REST PAUSES, WORTKING: CONDITIONS AND INDUSTRIAL FFFICIENCY

SUPPLIEMENTARY PROGRESS REPORT AS OF May 11, 1929

WESTYERN ELECTRIC COMPANY

IXPLANATORY PRHFACE

Previous progress reports of these studies have been issued. The last such report gave all of the data and results obtained up to August 15, 1928. The present report is a supplement. The following pages do not repeat data presented in the earlier report except where such data have been revised or where it seems more natural to include complete instead of partial graphs and tables. Instead of preparing this supplementary report in the form of separate sections to be inserted in the previous report, it has seemed wiser to prepare it as a unit, with references to the earlier report. This report, therefore, reflects earlier results and when read by itself it will give an outline picture of what has been accomplished to date. From the Pollowing index the reader may see at a glance the outline of the report and by means of the page numbers he may turn readily to any data of special interest. The numbering and naming of tables is such that any tables included in previous reports have tho same numbers and titles as previously, while similar tables for new tests are narned and numbered similarly under the sections rolating to those tests. Graphs are numbered in accordince with the page which they follow in this report.
Page
SGCTION I－OBJヨCTS OF TYE STUDY 1
Original cbjectives，broadened scope 1
Progran of first relay assembly group． 2
S．BCIION II－FINDIIGS，FIRST RBLAAY ASSEMBLY GROUP． 4
Output Records 4
Reduction of basic data to common unit． 4
Basic data table 6
Rate of production 24
Table 耳o．l－Average hourly output and per cent of efficiency 25
Table No．la－Division of data of table
NO． 1 on account of chance of operators 30
Chart from table No． 1 ． 32a
Chart irom table No．1A． $32 b$
Average hourly output，table 33
chart $33 a$
Weekly cutput 34
Table No． 3 －Weekly output and average weekly cutput by pericd．s． 35
Chart－outiput by weeks． 39a
Chart－Average weekly output by periods 39b
Chart－Averace daily sutput by periods 39c
Significance and reliability of variations in averace output by periods 40
Table No． 4 －Reliability of comparative averace outputs，complete group 43
Table ivc． 4 A －Reliability of comparati．ve averaee cutputs，cperators Nos．3，4，and 545 45
Speed．উesis．
Variation in Output During the Different Days of the Week 48
Chart DVI－Daily cuiput for cperator No．5， first ten periods 51a
Chari DV2－Average daily outrut for group， first íen perioãs 51b
Chart DV3－Averase daily cutput for individ． ual operators，certain periods only ．．． 51c
Table－Average daily cutputs，period Nc． 12. 52
Variation in Output by Heurs of the Day 53
Charts こさ fifteen－minute outputs． $53 a$ to $53 e$
Table－Comparison of Morning and Afternoon Outputs． 54
Uniformity of Performance 55
Table－nicrning and afternoon variations 56
Tables－Average variation oi individuals and oi the group 57
Quality of Production. 59
iffects upen Cperators 59
Health and attondance 59
Teble - Attendance irregularities 60
Charts - Blccd pressure data. 618
Mental attitude 62
 64
Accidentel Factors which May Affect Results 64
Seasonal Variation 64
Changing type of relay 64
Table - Bifect on outputs of changing type of relay 66
fifect af periodic juness 70
Table - Data cn cutput durine pericdic inness 71
Hours of sieep in relation to output 79
Table - Average output in melation to sleep, and the statistical significance of 81differencesCharts - Comparisen of cutput with heurs
of sleep. 81a, b
Fotigue in Relation to Increasod Output 82
Changes in cutput by perioos 83
Cardia-vascular skin reaction readings 85
Table - Cardic-vascular skin reaction readines 88
Facters Othor than Fatigue 91
SECRION IV - NTW SIUDIES 93
Secend. Relay issembly Grcup. 93
Basic d.èz table 95
Table NC. I - Averase hourly outputs and par cont \mathbb{t} efficiency 101
Table No. 3-Total weokly outputs and averaec weekly outputs 103
The Mica Group
104
Procedu?e
The indivioual eperators 105
Results to dete 107
Basic daía table 109
Table No. I - Averasa hcurly cutput ana por cent of efficiency 116
Table RF. 3 - Total weolly cutputs and averace weekly outputs 118
Chert - Por cent of efficiency by weoks 119a
Chext - Ouडput by wooks. 119b
Typewriting Grcup 120
Chart - Rate os cutput, points per hour $120 a$
3ffect ef Ovoriome on Bificiency 120
Tablo - Cvertime eificiency, ien mica splitivers. 121
Table - Crextimo efificiency, six armature straighteners 125
Affect Cf Rest pauses for Regular Shcp Groups. 124
Chart - 3riect of rest pauses. 124 a
 125Outcmes
Rest perico.s established in regular
depart-ments125
The interviewing prcgram 125
Observations and Cenclusions 126
New itioms 126
Items previcusly repor亡ed. 129
The imperiance if considerate supervision. 131
SECTION VI - BIBIICGRAPIHY OF ARTICIES RIVIZNBD. 134
APPITDIX A - (SACMIONS II, III, AMD IV CF PROVIOUS RTPORE). 136
Beginning ef Tesi and Istablishing of Tesi hocm. 1366
Method of Reccrding Output Data 139
Method. $\mathrm{c} f$ Payment 143
Phetographs. 144a,b,c
APPJTDIX B - (SECTION X OF PREVIOUS RTPORT). 145
Facters Affecting Output but Bxternal to the
Changing Ccnditions $c f$ the zxperiment. 155Chart - Seascnal variations in cutput . . . 146a

AN TNVESTIGATION OF RZST PAUSES, WORKTNG CONDITIONS,

 AND INDUSTRIAL RFFICIENCYSUPPIFNGETTARY PROGRESS REPORT
WISSTERRN ELECTRIC COMPANY

SECTION I
OBJBCT OF THE STUDY

Studies made in the past regarding the improvement of working conditions, the establishment of piece rates, and reduction in the cost of manufacture, have shown large variation in output over different pariods of the day and between different working groups. The answers to such questions as the following are of great import to industry and to the industrial worker:

1. Why does output drop in the afternoon?
2. Do operators actually got tired out?
3. Are rest pauses desirable?
4. How important arc chanses in working equipment?
5. What is the attitude of the operators?
6. What are the effects of a shorter working day on output?

It was decided to conduct certain tests in order to determine the answers to such questions; and in order to investigate these conditions it was proposed to select and segregate certain groups of operators for study.

The first test undertaken, the one with which this report is chicfly concerned, was begun on April 25, 1927, to determine what efiect rest pauses and various hours of work would have in increasing the efficiency of an operator. As the test developed, iactors other than the rest pauses were found to be of outstanding importance and the study naturally broadencd into a consideration of the various conditions thich erfect output, speed, efficiency, health, and contentment. Many additional questions have arisen relating to such problems as basis of pay, overtime, the five day week, the measurement of fatigue, and the relation between supervision and output.

It may be recalled from previous progress reports that the first relay assemblers group has been through a series of periods of experiment. During the first period, known as the base pericd, the operators continued with their large gang under the accustomed conditions while their production data was taken to serve as a basis for comparison with production in the test room. The second period duplicated the first except for the fact that the operators were removed from the large room occupied by the main gang and placed in the test room. This gave basis for judging the effect of change in environment alone. The first major variation was introduced in the third period. The operators segregated for test were formed into a new gang and placed upon a gang piece rate independent of the main gang. In the fourth period two five rainute rest pauses were introduced, one in the morning, and one in the afternoon. In the fifth period, the length of these rest pauses was increased to ten minutes. The sixth period introduced six five minute rest pauses, three in the morning, and three in the afternoon. In the seventh period a morning lunch furnished by the Company was introduced. A rest pause of fifteen minutes was provided for this and in addition a pause of ten minutes was inserted in the afternoon. The eighth* and ninth periods duplicated the seventh except that the working day was ended at half past four and four o'clock in the afternoon respectively. The tenth period reverted to a duplication of the seventh period.

Since the writing of these former progress reports, there have been three additional periods. In the eleventh period a five day week was tried. During this period the morning lunch and afternoon rest pause were continued as in the four preceding periods. While the operators did not work on Saturday morning, they were paid their hourly rate for this time which gave them approximately onehalf of their Saturday morning earnings on the gang piece work basis. The twelfth period reverted to a duplication of the third period, that is, a return to the regular lactory working hours without morning lunch or rest pauses. The thirteenth period, which still is in effect, is a duplication of the seventh period except that the operators furnish their own lunches while the Company furnishes a beverago.

On the following page is a listing of these periods by number by which they may be identified throughout the remainder of the report; the dates included and the duration of each period, and the times of day rest pauses wore inserted are shown.
*At the beginning of this period operators Nos. 1 and 2 were replaced. These new operators had no base period of observation. Their performance in subsequent periods is compared with period No. 8 as a base.

SCHEDULE OF TEST PERTODS

 FIRST REIAY ASSEMBLY GROUP

SECTION II

ITINDINGS
FIRST RETAY ASSEMBLY GROUP

A. OUTPUT

1. Basic Data

As indicated in previous reports all output data have been converted to figures indicating what the output would kave been in assembling a specific type of relay; namely, E-901. These conversions were based upon the time and difficulty of assembling each relay. The daily output for each operator* and the average for the spoup as a whole are reported in the "Basic Data Table" which follows.

This table shows (a) the daily output in terms of perfect E-901 relays which would have boen produced during the working time indicatod; (b) the output for Wednesday and Friday (repair work days) which would have been produced had no repair work been necessary; (c) the output that would have been attained if Saturday were a full day; and (d) the output which would have been produced on holidays and days absent if the operator had maintained her average rate for the days worked that week.**

The different figures referred to above wore computed as follows:
(a) The equivalent daily output is expressed in terms of the number of perfect $\mathrm{E}-901$ relays assombled. When the full day is broken because of a conference, a hospital visit, or some other interforence, the daily output is
*The numbering of the operators is as follows:
No. Periods 1 to 7 Inclusive Period 8 to Present Time

1
2
2
3
4
4
5
5
(Layout Operator) I
引k
**Figures described under (b) and (c) arc used only in comparing the output of different days of the week. Figures described under (d) are used in studying comparative weekly outputs.
figured by dividing the actual output converted to the common type ($\mathrm{E}-901$) basis by the timo Worked* in asscmbling relays. The quotient (hourly output) is multiplicd by the number of hours left in the working day after time for repairs, iest pauses, and carly closing has been doducted from the length of the normal working day ($8-3 / 4$ hours).
(b) The daily output which would have been produced if no tinc had boon takon for repairs is figured the same as tho above except that the time for repairs is not deducted from the number of working hours in the day in obtaining the figure to multiply by the hourly rate.
(c) The output that would be attained in Saturday rere a full working doy is figured by dividing the saturday output on the basis of E-901 relays by the number of hours morked* and multiplying this figure by the number of hours in the full morking day of the period in question.
(d) The output for holidays and days absent is figured by dividing the weckly output by the number of hours worked* and multiplying this figure by the number of hours that rould have becn jorked on the day in question.

[^0]DAILY OUTPUT IN TERMS OF E-901-RELAYS
The right hand columns under each operator's number show the output of perfect E-901 relays which would have been produced during the working time indicated at the left. (All defective relays were repaired on the operator's time.)

The left hand columns show what the operator would have produced on Wednesdays and Fridays if she had used no time for repairs; figures in parentheses for Saturdays give the results for a full day. These figures are not used in any totals. They are for comparing outputs for the days of the week.

Figures in quotations are for holidays or absences.

* Not included in period but is in week.

Hr. \& Min.						Operators				5		Av. for Group	
Date	Worked	1	1		2		3		4				
8-15-27	'8:35		451		442		485		43°		1462		456
8-16	8:35		457		461		480		447		437		456.
8-17	8:35	455	437	426	416	486	481	461	451	431	415	452	440
8-18	8:35		453		388		474		477		441		447
8-19	8:35	449	445	415	403	455	455	480	478	436	420	447	440
8-20	4:10	(430)) 209	(395)	192	(459)) 223	(447)) 217	(410)	199	(428)) 208
Total	47:05		2452		2302		2598		2508		$\overline{2374}$		$\overline{2447}$
8-22-27	8:35		445		471	Vaca	ation		470		430		454
8-23	8:35		452		444		n		494		418		452
8-24	8:35	366	336	412	381		"	486	447	458	441	431	401
3-25	8:35		450		434		"		457		437		445
8-26	8:35	447	444	435	435		"	469	469	436	428	447	444
8-27	4:10	(455)	221	(445)	216		"	(474)) 230	(398)	193	(443)) 215
Total	47:05		2348		2381				2567		$\overline{2347}$		2411
8-29-27	8:35		437		472		435		445		442		446
8-30	8:35		440		509		456		439		453		459
8-31	8:35	436	432	497	494	444	397	444	441	432	426	451	438
9-1	8:35		448		486		480		459		451		465
9-2	8:35	423	413	475	469	454	443	473	466	446	436	454	445
9-3	4:10	(441)	214	(488)	"237"	(430)) 208	(432)) 210	(453)	220	(449)) 218
Total	47:05		2384		2667		2420		2460		$\overline{2428}$		2471
9-5-27	"8:35"		"444"		" $4433^{\prime \prime}$		"469"		"471"	Vaca	tion		"457"
9-6	8:35		453		434		464		455		"		452
9-7	8:35	436	423	444	438	466	453	471	466		"	454	445
9-8	8:35		446		440		470		480		"		459
9-9	8:35	454	448	463	460	490	487	492	492		n	475	472
9-10	4:10	(459)	$\underline{223}$	(449)	218	(495)) 240	(461)) 224		"	(466)) 226
Total	47:05		2437		2433		2583		2588				2511
Period	235:25		12090		9783*		10099*		12591		9538*		12296
Av. Hr .Out	tput		51.4		51.9		53.5		53.5		50.6		52.2

* 188:20 hours not 235:25 hours.

PERIOD INO. 5 - TWO 10-MINUTE RESTS													
9-12-27	8:25		464		500	:	479		466		467		475
9-13	8:25		461		502		475		468		453		472
9-14	8:25	460	433	445	418	458	450	442	431	436	416	448	430
9-15	8:25		460		491		454		451		457		463
9-16	8:25	445	436	434	407	461	461	445	445	478	459	453	442
9-17	4:05	(450)	$218{ }^{\circ}$	(471)	228	(537)	260	(491)	238	(456)	221	(481)	233
Total	46:10		2472		2546		$\overline{2579}$		2499		2473		2515
9-19-27	8:25		440		444		483		454		464		457
9-20	8:25		430		437		486		458		455		453
9-21	8:25	441	423	438	423	510	495	412	502	457	430.	472	455
9-22	8:25		469		472		493		471		471		475
9-23	8:25	456	450	455	448	516	516	516	516	454	433	479	473
9-24	4:05	(466)) 226	(464)	225	(489)	237	(468)	227	(417)	202	(461)	225
Total	46:10		2438		2449		2710		2628		2455		2536

Hr . \& Min.				Operators						5		Av. for Group	
Date	Vorked	1	1		2		3		4				
2-6-28	7:50		482		481		459		488		453		473
2-7	7:50		502		516		506		513		452		498
2-8	7:50	495	454	526	492	489	460	495	484	437	405	488	459
2-9	7:50		524		532		498		502		433		498
2-10	7:50	506	496	521	513	497	488	514	514	458	445	499	491
2-11	4:00	(462)) 236	(501)) 256	(472)) 2411	(497)) 254	(438)	224	(474)) 242
Total	$\overline{43: 10}$		2694		2790		$\overline{2652}$		2755		2412		2661
2-13-28	7:50		455		492		447		500		464		472
2-14	7:50		470		512		497		494		458		486
2-15	7:50	507	491	540	516	518	508	517	511	440	432	$\square 05$	492
2-16	7:50		541		563		510		494		457		513
2-17	7:50	535	517	554	544	509	502	511	506	463	449	514	504
2-18	4:00	(487)	249	(505)) 258	(475)) 243	(491)) 251	(421)	215	(476)) 243
Total	43:10		2723		2885		2707		2756		$2 \angle 75$		2710
2-20-28	7:50		460		480		480		498		462		476
2-21	7:50		476		515		494		495		466		489
2-22	7:50	496	466	508	490	495	476	503	499	462	434	493	473
2-23	7:50		501		511		466		497		466		488
2-24	7:50	518	490	522	509	516	516	513	513	457	453	505	496
2-25	4:00	(477)	244	(510)) 261	(474)	242	(491)) 251	(462)	236	(483)) 247
Total	43:1C		$\overline{2637}$		2766		$\overline{2674}$		2753		$\overline{2517}$		2669
2-27-28	7:50		491		504		480		498		429		480
2-28	7:50		512		533		489		51.0		442		497
2-29	7:50	509	489	529	516	507	499	517	516	454	437	503	491
3-1	7:5c		521		531		511		437		456		503
3-2	7:50	516	5 C 4	522	515	480	473	501	498	467	456	497	489
3-3	4:00	(477)) $3 \leq 4$	(509)) 260	(456)) 235	(475)) 243	(4.43)	226	(472)) 241
Total	43:10		2761		$\overline{2859}$		2685		2762		$\overline{2446}$		2701
3-5-28	7:50		436		517		483		488		455		486
3-6	7:50		503		517*		509		488		443		492
3-7	7:50	538	515	503	499**	*513	499	518	515	431	428	501	491
3-8	7:50		520		$511 *$		49		488		448		492
3-8	7:50	513	513	510	510*	${ }^{4} 474$	474	476	476	430	421	481	479
3-10	4:00	(501)) 256	(487)	243*	(475)) 243	(484)) 247	(424)) 217	(474)) 242
Total	43:10		2795		2803		2699		2700		2412		2682
Period	302:10		18951		19482		18756		19145		17131		18691
Av. Hr .Out	put		62.7		64.4		61.9		63.2		53.6		61.8

* Operators No. 1 and No. 2 replaced at beginning of this period ** Substitute

Date	HF. 26 M Worke		1		2		perato 3		4		5		t. fōr Group
3-19-28	7:20		461		471		469		481		458		468
3-20	7:20		439		510		466		479		434		476
3-21	7:20	481	456	496	484	474	461	480	470	457	448	478	464
3-22	7:20		490		503		483		477		454		481
3-23	7:20	484	473	499	491	472	464	471	471	455	450	476	470
3-24	4:00	(471)	257	(493)	269	(464)	253	(455)	2.48	(440)	240	(465)) 253
Total	40:40		2626		2728		2596		$\underline{2626}$		2484		2612
3-26-28	7:20		477		498		430		469		447		464
3-27	7:20		- 470		483		[54		448		409		453
3-28	7:20	496	476	529	517	486	473	470	460	436.	421	483	469
3-29	7:20		488		505		476		472		423		473
3-30	7:20	492	482	512	502	476	471	472	472	429	418	476	469
3-31	4:00	(480)	262	(486)	265	(460)	251	(464)	253	(414)	226	(461)) 251
Total	40:40		2655		2770		2555		2574		2344		2579
4-2-28	7:20		482		476		458		456		443		463
4-3	7:20		500		504		466		461		454		477
4-4	7:20	496	486	510	504	442	440	452	448	428	415	466	459
4-5	7:20		512		517		464		454		454		480
4-6	7:20	513	501	521	511	466	461.	458	458	462	454	484	477
4-7	4:00	(486)) 265	(513)) 280	(429)	234	(± 27)	233	(429)	234	(457)) 249
Total	$\overline{40: 40}$		2746		2792		2523		2510		2454		2605
Period	162:40		10661		11078		10265		10351		9720		10414
Av. Hr. Out	tput		65.5		68.0		63.1		63.7		59.7		64.1
* Substitute													
PERIOD NO. 10 - SANE AS NO. 7 (CHECK)													
4-9-28	8:20		553		547		502		488		491		516
4-10	8:20		533		539		497		497		480		509
4-11	8:20	544	527	561	542	530	517	514	508	478	459	525	511
4-12	8:20		561		572		519		507		467		525
4-13	8:20	554	538	594	581	530	526	531	528	477	462	537	527
4-14	4:00	(600)	288	(606)) 291	(527)	253	(511)	245	(471)	226	(543)) 261
Total	45:40		3000		$\overline{3072}$		2814		2773		2585		2849
4-16-28	8:20		550		545		503		512		489		520
4-17	8:20		569		576		511		490		503		530
4-18	8:20	589	580	603	597	524	517	529	529	486	469	546	538
4-19	8:20		579		597		515		505		477		535
4-20	8:20	569	552	574	564	512	504	517	513	494	476	533	522
4-21	4:00	(550)) 264	(569)) 273	(529)	254	(511)	245	(486)	233	(529)) 254
Total	$\overline{45: 40}$		$\overline{3094}$		$\overline{3152}$		$\overline{2804}$		$\overline{2794}$		2647		2899
4-23-28	8:20		553		557		496		510		462		516
4-24	8:20		542		530		495		505		476		510
4-25	8:20	529	516	537	530	490	485	502	501	485	466	509	500
4-26	8:20		496		501		488		489		477		490
4-27	8:20	503	491	512	506	501	493	514	508	475	467	501	493
4-28	4:00	(502)) 241	(527)) 253	(477)) 229	(496)) 238	(482)	231	(497)) 238
Total	45:40		2839		2877		2686		2751		2580		2747

Hr .8 Min .				Operators						$5{ }^{4}$		Av. for Group	
Date	Worked		1		2		3		4				
9-10-28	8:45		522		531		496		531		467		509
9-11	8:45		540		572		541		563		504		544
9-12	8:45	554	539	555	539	551	531	543	542	505	500	542	530
9-13	8:45		558		565		538		540		493		539
9-14	8:45	562	547	570	555	537	530	550	550	478	478	539	532
9-15	4:15	(527)	256	(537)) 261	(573)) 278	(546)) 265	(580)	233	(533)	259
Total	48:00		$\overline{2962}$		$\overline{3023}$		2914		2991		$\overline{2675}$		2913
9-17-28	8:455		531		552		524		543		487		527
9-18	$8: 55$		559		570		514		529		505		535
9-19	8:<5	570	546	570	561	5×0	526	5 ± 5	545	501	501	545	536
9-20	8: 5		537		553		531		535		498		531
9-21	8:<5	585	557	583	553	518	509	539	539	431	431	531	518
9-22	4:15	(567)	275	(578)	281	(58')	283	(578)) 281	(${ }_{\text {c }} 66$)	227	(555)	269
Total	48:00		$\overline{3005}$		3070		2887		2972		$\overline{2649}$		2916
9-25-28	$8: \leq 5$		532		5×2		528		523		451		515
9-25	8:<5		$5 \leq 8$		555		475		506		520		521
9-26	8:<5	559	528	563	539	527	523	528	526	512	503	538	524
9-27	$8: \leq 5$		$5<5$		568		$5 ¢ 3$		540		≤ 88		537
9-28	8:15	562	552	567	556	$5 \leq 1$	536	539	539	490	490	540	535
9-29	4:15	(550)	267	(5efs)	283	(511)	2×8	(552)) 268	(456)	222	(531)	258
Total	48:00		2971		$\overline{50 \leq 3}$		2853		2902		2674		2890
10-1-28	8:15		524		529		519		508		503		517
10-2	$8: \leq 5$		550		557		528		529		$51 / 2$		536
10-3	$8: 5$	561	548	572	560	564	559	569	564	508	500	555	54.6
10-x	8:5		567		$58{ }^{\prime}$		530		$5 ¢ 8$		500		546
10-5	8:45	565	556	581	571	551	548	$5: 0$	538	${ }_{4} 90$	486	5×5	540
10-6	4:15	(571)	278	(592)	288	($58 \frac{1}{4}$)	284_{5}	(5×6)) 265	(513)	24.4	(561)	273
Total	$\overline{88: 00}$		$\overline{3023}$		3089		2968		2952		$\overline{2752}$		2958
10-8-28	$8: 5$		546		$5 x^{\prime}$		538		545		495		533
10-9	$8: 5$		560		568		551		554		513		549
10-10	8:45	557	53 6̂	567	545	569	557	568	566	518	509	556	543
10-11	8:155		558		583		512		545		493		538
10-12	8:45	550	546	567	555	517	513	542	538	$488{ }^{\circ}$	488	532	527
10-13	4:15	(564.)	2745	(571)	277	(567)	227	(509)) 2×4	(418)	203	(506)	246
Total	48:00		5020		$\overline{3072}$		2898		2994		$\overline{3697}$		2936
10-15-28	8:45		529		534		471		535		514		517
10-16	8:¢5		571		582		511		537		511		542
10-17	8:45	540	517	546	528	527	517	545	537	508	500	533	520
10-18	8:45		584		598		530		548		508		554
10-19	8:15	580	570	591	584	495	${ }_{4} 91$	523	521	505	505	539	534
10-20	4:15	(5155)	265	(551)	268	(516)	251	(533)	259	(495)	241	(528)) 257
Total	48:00		$\overline{3036}$		309:		2771		$\underline{2957}$		2779		2924
10-22-28	8:155		511		527		471		516		≤ 76		500
10-23	$8: 55$		514		530		520		539		486		518
10-24	8: ≤ 5	525	51:	$5 \cdot 9$	538	511	505	543	540	479	479	521	515
10-25	8:55		531		588		531		552		475		546
10-26	8:45	570	564	578	564	52\%	521	546	544	477	477	539	534
10-27	4:15	(577)	280	(597)	290	(590)	238	(519)	252	(527)	256	(512)	263
Total	48:00		2967		$\overline{3037}$		$\overline{2786}$		2943		2649		$\stackrel{2876}{ }$

Hr. \& Min.				Operators						Av. for			
Date	Worked		1		2	3	3		4		5		roup
10-29-28	8:45		543		558		512		519		517		530
10-30	8:45		521		534		514		516		507		518
1×131	8:45	536	519	537	526	523	519	541	539	520	520	531	525
11-1	8:45		539		536		523		534		480		526
11-2	8:45	540	536	557	553	536	535	539	538	511	511	537	535
11-3	4:15	(556)	$)$	(593)) 288	(533)	259	(517)) 251	(447)) 217	(529)) 257
Total	48:00		2928		$\overline{3015}$		2862		2897		2752		2891
11-5-28	8:45		531		534		523		533		512		527
11-6	8:45		563		570		512		514		486		529
11-7	8:45	578	571	600	591	538	531	535	532	480	479	546	541
11-8	8:45		563		540		533		517		451		521
11-9	8:45	526	521	539	534	549	545	554	553	504	499	534	530
11-10	4:15	(558)	$)$	(601)) 292	(494)	240	(535)) 259	(455)	$) \underline{221}$	(528)) 257
Total	48:00		3020		3061		2884		2908		2648		2905
11-12-28	8:45		531		533		440		504		475		497
11-13	8:45		546		560		541		555		518		544
11-14	8:45	557	548	567	550	480	478	505	501	460	460	514	507
11-15	8:45		568		587		530		531		517		547
11-16	8:45	600	596	615	607	544	543	545	545	494	494	560	557
11-17	4:15	(571)	277	(601)) 292	(552)	268	(558)) 271	(502)) 244	(557)) 270
Total	48:00		$\overline{3060}$		$\overline{3129}$		2800		2907		2708		2922
11-19-28	8:45		542		543		504		510		501		520
11-20	8:<5		560		581		525		532		475		535
11-21	8:45	- 559	545	579	568	506	504	516	516	492	492	530	525
11-22	8:45		553		578		500		533		425		518
11-23	8:45	573	570	593	582	506	503	532	532	"478"	" 478 "	536	533
11-24	8:45	(543)) 264	(560)) 272	(478)	232	(517)) 251	(513)) 249	(522)) 254
Total	48:00		$\overline{3034}$		$\overline{3124}$		$\overline{2768}$		$\overline{2874}$		2620		2885
Period	576:00		35968		36776		34372		35285		32313		34946
Av. Hr , Out	put		62.4		63.8		59.5		61.3		56.1		60.6

PERIOD NO. 13 - SAME AS NO. 7 BUT OPERS FURNISH OWN LUNCHES,CO. FURNISHES BEVERAGE													
11-26-28	8:20		544		554		513		. 503		495		522
11-27	8:20		580		585		533		533		512		549
11-28	8:20	574	554	581	571	541	532	542	522	512	512	550	538
11-29	8:20		"551"		"561"		"516"		"515"		"501"		"529"
11-30	8:20	539	539	553	555	476	476	481	481	489	489	508	508
12-1	4:00	(486)	233	(498)	239	(521)	250	(519)	249	(487)	234	(502)	241
Total	45:40		3000		3063		2820		2803		$\overline{2743}$		2887
12-3-28	8:20		543		556		534		538		493		533
12-4	8:20		569		588		528		536		507		546
12-5	8:20	571	559	551	532	550	541	540	535	500	500	542	583
12-6	8:20		586		610		557		545		507		561
12-7	8:20	576	562	586	580	558	556	550	547	508	508	556	551
12-8	소:00	(562)) 270	(596)	$) 286$	(498)) 239	(502)	241	(412	198	(514)	247
Total	45:40		3039		3152		2955		2942		$\overline{2713}$		2971

20.

*Substitute

12-17-28	8:20		326		534		494		535		518		520
12-18	8:20		543		554		521		557		478		531
12-19	8:20	574	551	578	559	513	500	561	552	517	517	549	536
12-20	8:20		580		600		492		546		517		547
12-21	8:20	596	581	619	613	526	523	557	555	529	529	565	560
12-22	4:00	(591)	284	(600)	288	(490)	235	(515)	247	(516)	248	(542)	260
	45:40		3065		3138		2765		2992		2807		2954
12-24-28	8:20		525		534		433		492		516		500
12-25	8:20		"555"		"570"		"493"		"520"		"513"		"530"
12-26	8:20	540	526	561	555	476	466	494	401	493	493	513	506
12-27	8:20		570		578		516		535		501		540
12-28	8:20	586	575	606	596	549	546	559	557	543	543	569	563
12-29	4:00	(555)	"266"	(570)	"274"	(493)	"237"	(520)	"250"	(513)	"246"	(530)	"255"
Total	45:40		3017		$\overline{3107}$		$\overline{2691}$		$\overline{2845}$		3812		$\overline{2894}$
12-31-28	8:20		531		552		481		527		498		518
1-1-29	8:20		"561"		"582"		"529"		"554"		"486"		"542"
1-2	8:20	556	555	581	581	544	539	535	535	503	504	544	543
1-3	8:20		558		575		539		574		491		547
1-4	8:20	595	588	613	611	553	548	577	574	465	465	561	557
1-5	4:00	(565)	271	(598)	287	(531)	255	(561)	269	(461)) 221	(543)	261
Total	45:40		3062		$\overline{3188}$		2891		3033		2665		2968
1-7-29	8:20		561		571		559		571		494		551
1-8	8:20		584		596		54.4		571		483		556
1-9	8:20	566	551	588	580	554	543	576	569	573	464	551	541
1-10	8:20		536		553		534		553		469		529
1-11	8:20	555	548	581	570	$5<7$	539	556	556	500	495	548	542
1-12	4:00	(533)	256	(563)	270	(531)	255	(527)	253	(419)	201	(515)	247
Total	45:40		3036		3140		$\overline{2974}$		3073		2606		2966
1-14-29	8:20		524		538		522		554		489		525
1-15	8:20		563		571 a		549		569		508		553
1-16	8:20	542	524	583	562	559	548	586	580	≤ 75	471	349	537
1-17	8:20		. 555		580		537		567		496		547
1-18	8:20	563	544	571	568	544	541	575	575	507	474	552	540
1-19	4:00	(540)	259	(562)	270	(490)	235	(516)	248	(496)	238	(521)	250
Sotal	$\overline{45: 40}$		2969		3092		$\overline{2932}$		$\overline{3093}$		2676		2952

Date Hr. \& Min.				Operators						5		Avs for Group	
				2	2	3		4	4				
1-21-29	8:20		551		565		505		516		486		525
1-22	8:20		553		601		557		576		474		554
1-23	8:20	585	558	612	595	569	557	587	578	488	472	568	552
1-24	8:20		574		593		555		580		474		555
1-25	8:20	551	527	577	566	573	565	586	581	484	481	554	544
1-26	4:00	(561)) 269	(604)	290	(541)	260	(562)	270	(504)	242	(554)	266
Total	45:40		$\overline{3042}$		3210		2997		3101		2629		$\overline{2996}$
1-28-29	8:20		549		556		539		567		486		539
1-29	8:20		576		602		558		576		480		558
1-30	8:20	574	556	593	565	556	541	582	578	492	486	559	545
1-31	8:20		554		573		558		579		503		553
2-1.	8:20	570	562	595	575	549	535	566	560	489	480	554	542
2-2	4:00	(540)	$) \underline{259}$	(569)	273	(541)	260	(590)	283	(466)	224	(541)	260
Total	45:40		3056		3144		2991		3143		2659		$\underline{2997}$
2-4-29	8:20		552		576		524		547		489		538
2-5	8:20		582		606		545		569		486		558
2-6	8:20	613	596	644	630	535	521	562	5×5	491	488	569	555
2-7	8:20		591		619		576		592		497		575
2-8	8:20	603	589	631	624	568	568	608	604	508	508	584	579
2-9	4:00	(562)	270	(611)	293	(506)	243	(558)	268	(491)	236	(546)	262
Total	$\overline{4,5: 40}$		$\overline{3180}$		$\overline{3348}$		2977		$\overline{3125}$		2698		3067
2-11-29	8:20		535		562		508		566		446		523
2-12	8:20		562		607		508		548		455		536
2-13	8:20	571	544	609	597	513	506	575	567	462	459	546	535
2-14	8:20		556		589		517		567		459		538
2-15	8:20	567	553	597	590	526	519	567	567	${ }_{4} 98$	493	551	544
2-16	4:00	(587)	282	(629)	302	(550)	$2{ }^{3}$ 全	(558)	268	(436)	209	(552)	265
Total	45:40		3030		$\overline{3247}$		2822		$\overline{3083}$		25\%1		2941
2-18-29	8:20		543		610		536		568		456		543
2-19	8:20		588		632		542		570		510		568
2-20	8:20	588	577	655	64:	556	549	603	603	505	501	581	574
2-21	8:20		581		619		569		604		529		580
2-22	8:20	531	515	592	581	559	557	601	601	520	520	561	555
2-25	4:00	(569)	273	(621)	298	(523)	251	(571)	274	(433)	208	(5×3)	261
Total	45:50		$\overline{3077}$		$\overline{3582}$		$\overline{300 x^{\prime}}$		32		$\underline{2724}$		3081
2-25-29	8:20		546		567		542		568		465		538
2-26	8:20		553		585		541		597		507		557
2-27	8:20	570	552	597	588	558	555	606	603	486	483	565	556
2-28	8:20		543		583		527		584		461		540
3-1	8:20	545	532	575	567	546	542	57%	573	461	451	540	533
3-2	4:00	(521)) 250	(589)	283	(55\%)	266	(560)	269	(468)	225	(538)	259
Total	45:40		2976		$\overline{3173}$		2973		3194		2592		2983
3-4-29	8:20		522		561		559		577		49.1		543
3-5	8:20		$54 \times$		564		545		585		512		550
3-6	8:20	566	551	601	587	533	51 \%	578	575	493	484	554	542
3-7	8:20		570		615		545		567		478		555
$3-8$	8:20	564	554	611	591	551	547	609	609	507	497	568	560
3-9	4:00	(49x)) 237	(562)	270	(481)	231	(541)	260	(1×75)	228	(511)	245
Total	45:40		2978		$\overline{3188}$		29×1		$\overline{3173}$		2693		2995

[^1]| Hr. \& Min. | | | | Operators | | | | | | 5 | | Av. for Group | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Worled | | 1 | 2 | 2 | 3 | 3 | | 4 | | | | |
| 5-11-29 | 8:20 | | $52 \div$ | | 589 | | 539 | | 573 | | \$88 | | 543 |
| 3-12 | 0:20 | | 577 | | 628 | | 528 | | 567 | | 471 | | 554 |
| 3-13 | 8:2\% | 550 | 525 | 596 | 573 | 525 | 507 | 576 | 569 | 511 | 492 | 549 | 533 |
| 3-14 | 8:20 | | 571 | | 623 | | 528 | | 567 | | 425 | | 555 |
| 3-15 | 8:20 | 547 | 531 | 594 | 580 | 521 | 508 | 581 | 577 | 496 | 696 | 548 | 538 |
| 3-16 | 4:00 | (558) |) 268 | (598) | 287 | (521) | 250 | (561) |) 2691 | " 490 " | M"235" | (5s-6) | 262 |
| Total | 人5:10 | | 2998 | | $\overline{3280}$ | | $\overline{2860}$ | | $\overline{3122}$ | | $2 \overline{267}$ | | $\overline{2985}$ |
| 3-18-29 | 8:20 | | 552 | | 585 | | 567 | | 584 | | 493 | | 556 |
| 3-19 | 8:20 | | 591 | | 624 | | 545 | | 602 | | 507 | | 574 |
| 3-20 | 8:20 | 609 | 602 | 642 | 634 | 531 | 524 | 591 | 586 | 502 | 502 | 575 | 570 |
| 3-21 | 8:20 | | 593 | | 622 | | 527 | | 569 | | 505 | | 563 |
| 3-22 | 8:20 | 593 | 587 | 627 | 619 | 530 | 528 | 575 | 573 | 504 | 504 | 566 | 562 |
| 3-23 | 4:00 | (575) | $) \underline{276}$ | (621) | 298 | (544) | 261 | (561) | 269 | (494) | 237 | (559) | 268 |
| Total | 45:40 | | $\overline{3201}$ | | 338\% | | $\overline{2932}$ | | $\overline{3183}$ | | $\overline{2748}$ | | $\overline{3093}$ |
| 3-25-29 | 8:20 | | 554 | | 586 | | 560 | | 589 | | 520 | | 562 |
| 3-26 | 8:20 | | 575 | | 610 | | 54.4 | | 577 | | 511 | | 563 |
| 3-27 | 8:20 | 591 | 581 | 624 | 607 | 533 | 523 | 581 | 577 | 523 | 523 | 562 | 570 |
| 3-28 | 8:20 | | 608 | | 635 | | 521 | | 580 | | 525 | | 574 |
| 3-29 | 8:20 | 625 | 622 | 65 | $6 \leq 5$ | 551 | 547 | 605 | 601 | 486 | 486 | 584 | 580 |
| 3-30 | 4:00 | (555) | $) 271$ | (612) | 29\% | (<81) | 231 | (552) |) 265 | (475) | 228 | (537) | 258 |
| Total | 45: 5 | | 3211 | | $\overline{3377}$ | | $\overline{2926}$ | | $\overline{3189}$ | | $\overline{2793}$ | | $\overline{3107}$ |
| 4-1-29 | 8:20 | | 566 | | 584 | | 512 | | 565 | | 668 | | 539 |
| ≤-2 | 3:20 | | 533 | | 580 | | 501 | | 567 | | 470 | | 530 |
| ≤-3 | 8:20 | 536 | 526 | 586 | 575 | 500 | 494 | 586 | 579 | 467 | 461 | 535 | 527 |
| $\underline{-4}$ | 8:20 | | 536 | | 582 | | 520 | | 570 | | 487 | | 539 |
| $c-5$ | 8:20 | 555 | 559 | 621 | 618 | 564 | 562 | 598 | 598 | 487 | ¢87 | 567 | 565 |
| 4-6 | A:00 | (571) |) 273 | (625) | 300 | (573) | 275 | (616) | 296 | (290) | 235 | (575) | 276 |
| Total | S-5: $=0$ | | $\overline{2993}$ | | $\overline{3239}$ | | $\overline{2864}$ | | $\overline{3175}$ | | 2608 | | $\overline{2976}$ |
| 1-8-29 | 8:20 | | 575 | | 592 | | 578 | | 612 | | 496 | | 571 |
| $c_{c}-9$ | 8:20 | | 585 | | 623 | | 586 | | 651 | | 505 | | 586 |
| c-10 | 8:20 | 521 | 613 | 645 | 629 | 557 | 562 | 610 | 609 | 513 | 506 | 591 | 58\% |
| $4-11$ | 8:20 | | 588 | | 625 | | 565 | | 590 | | 512 | | 575 |
| 4-12 | 8:20 | 55.5 | 558 | 599 | 592 | 567 | 564 | 600 | 500 | 504 | 494 | 557 | 562 |
| 4-13 | 4:00 | (505) | 290 | (619) | 297 | (577) | 277 | (596) | 28.5 | (479) | 230 | (571) | 274 |
| Total | 45:40 | | 3199 | | $\overline{3358}$ | | $\overline{3132}$ | | $\overline{3328}$ | | $\overline{2743}$ | | $\overline{3153}$ |
| 4-15-29 | 8:20 | | 537 | | 587 | | 573 | | 606 | | 510 | | 553 |
| 4-16 | 8:20 | | 574 | | 607 | | 551 | | 598 | | 491 | | 564 |
| 4-17 | 8:20 | 581 | 562 | 622 | 607 | 549 | 538 | 606 | 502 | 459 | 455 | 565 | 553 |
| 4-18 | 8:20 | | 578 | | 640 | | 574 | | 630 | | 464 | | 577 |
| 4-19 | 8:20 | 563 | 555 | 624 | 613 | 539 | 552 | 604 | 600 | 481 | 477 | 566 | 559 |
| 4-20 | 4:00 | (550) |) 264 | (59¢) | 285 | (531) | 255 | (51.6) |) 262 | (460) | 221 | (536) | 257 |
| Total | S5:CO | | $\overline{3070}$ | | $\overline{3339}$ | | $\overline{3043}$ | | 3298 | | $\overline{2618}$ | | $\overline{3073}$ |
| 4-22-29 | 8:20 | | 524 | | 575 | | 542 | | 600 | | 480 | | |
| 4-23 | 8.520 | | 567 | | 625 | | 541 | | 598 | | 499 | | 566 |
| 4-24 | 8:20 | 57\% | 565 | 631 | 619 | 526 | 519 | 553 | 586 | 481 | 471 | 561 | 552 |
| 4-25 | 8:20 | | 565 | | 623 | | 537 | | 598 | | 493 | | 563 |
| 4-26 | 8:20 | 548 | 582 | 626 | 622 | 571 | 569 | 603 | 603 | 518 | 518 | 580 | 579 |
| 4-27 | 1:00 | (546) |) 262 | (611) |) 293 | (573) |) 275 | (606) |) 291 | (511) |) 245 | (569) |) 273 |
| Total | $\overline{45: 0 n}$ | | $\overline{3065}$ | | $\overline{3357}$ | | $\overline{2983}$ | | $\overline{3276}$ | | $\overline{2706}$ | | $\overline{3077}$ |

$\mathrm{Hr} . \& \mathrm{Min}$.				$2{ }^{\text {Operators }}$						5		Av. for Group	
Date	Torked		1										
4-29-29	8:20		523		582		533		592		516		553
4-30	8:20		538		617		538		597		528		578
5-1	8:20	581	566	641	635	565	554	617	610	496	496	580	572
5-2	8:20		614		654		584		646		501		600
5-3	8:20	(621)) 611	666	662	600	598	648	644	537	534	614	610
5-4	4:00	(594)	$) 285$	(631)	303	(586)	281	(611)	293	(315)) 247	587	282
Total	$\overline{45: 40}$		$\overline{3167}$		$\overline{3453}$		$\overline{3158}$		$\overline{3382}$		$\overline{2822}$		$\overline{3185}$
5-6-29	8:20		574		606		584		604		513		576
$5-7$	8:20		592		643		601		631		497		593
5-8	8:20	600	592	651	647	587	585	629	628	510	510	595	592
5-9	8:20		598		641		589		615		504		589
5-10	8:20	562	559	616	602	546	532	597	593	502	502	565	558
5-11	4:00	(537)) 258	(600)	288.	(554)) 266	(587)	282	(230)) 479	(551)	265
Total	$\overline{45: 40}$		$\overline{3173}$		$\overline{3427}$		$\overline{3157}$		$\overline{3353}$		$\overline{3005}$		$\overline{3173}$

2. The Rate of Production - Hourly Output and Per Cent of Efflciency

From the preceding basic data the average hourly output has been computed each week for each operator. This weekly average hourly output has been compared with a similar figure for the base period to give an index of an increasing or decreasing rate of production in comparison with the base period. This index is expressed as a percentage and is called the per cent of efficiency. Table 1 presents these data for the operators individually.

Table lA presents similar average figures for sub-divisions of the group. It may be recalled that original operators Nos. 1 and 2 were replaced at the beginning of the eighth period. Since that time Table la has carried the average for operators Nos. 3, 4, and 5 separately becsuse the base periods for these two sub-groups were not comparable. The per cent of efficiency for operators Nos. 1 and 2 is based upon their performance during period No. 8.

The two graphs following Tables 1 and 1 A give a visual representation of the changes in the hourly output rate week by week and by periods of work.

The table on page 33 presents the average hourly output by periods for each operator, expressed as a percentage of the operator's maximum speed. The figure used as an index of maximum speed is the operator's greatest single fifteen minute output during the first year of the study.

The graph following this table is a plot of the data presented in the table.

FIRST $\frac{\text { TABLE NO. } 1}{\text { RELAY ASSELBLY GROUP }}$														
Average Hourly Output and Per Cent of Efficiency by Weeks and by Periods														
	Hrs. of Work		$\text { Oper. No. } 1$		$\frac{\text { Oper. No. } 2}{\text { Aver. }}$		Oper. No. 3		Oper. No. 4		Oper. No. 5		Group	
Period	$\begin{array}{r} \text { Per } \\ W \mathrm{Wk} . \\ \hline \end{array}$	Wk. in Period	Hourly Output	\% of Eff.	Hourly Output	$\%$ of Eff.	Hourly Output	$\begin{aligned} & \% \text { of } \\ & \text { Eff } \end{aligned}$	Hour Output	$\%$ of Eff.	H Hourly Output	\% of Eff.	Aver. Hourly Output	\% of Eff.
Base Period in	48.00	1												
Regular Department		2												
			50.5	100	49.7	100	49.7	100	49.7	100	48.3	100	49.7	100
No. 2														
Introduction to	48.00	1	47.6	94.3	45.6	91.7	50.2	101.0	52.9	106.4	48.0	99.4	48.9	9.8 .6
Test Room		2	50.2	99.4	54.5	109.7	52.6	105.8	54.0	108.7	50.8	105.2	52.4	105.8
		3	47.3	93.7	45.9	92.3	50.0	100.6	50.8	102.2	47 . 8	99,2	48.4	97.6
		4	46.7	92.5	45.7	91.9	43.7	87.9	48.1	96.8	47.7	98,8	46.4	93.6
		5	47.2	93.5	48.9	98.4	51.0	102.6	49.9	100.4	50.1	103.7	49.4	99.7
No. 3 l														
Special Gang Rate	48.00	1	47.4	93.9	48.9	98.4	51.6	103.8	50.0	100.6	50.4	104.3	49.7	100.2
		2	46.4	91.9	48.1	96.8	52.9	106.4	51.0	102.6	51.8	107.2	50.0	101.0
		3	44.4	87.9	46.6	93.8	52.5	105.6	Vac.	Vac.	50.1	103.7	48.4	97.8
		4	48.6	96.2	49.2	99.0	54.3	109.3	51.1	102.8	48.6	100.6	50.4	101.6
		5	47.5	94.1	51.2	103.0	54.5	109.7	53.8	108.2	52.1	$10 \% .9$	51.8	104.6
		6	50.3	99.6	52.4	105.4	54.4	109.5	53.9	108.5	50.4	104.3	52.3	105.5
		7	52.1	103.2	53.3	107.2	54.3	109.3	52.9	106.4	50.9	105.4	52.7	106.3
		8	50.7	100.4	53.4	107.4	54.8	110.3	52.7	106.0	50.4	104.3	52.4	105.7
Two 5 Minute Rests	47.08	1	52.9	104.8	Vac.	Vac.	53.1	106.8	52.6	105.8	51.0	105.6	52.4	105.8
		2	52.1	103.2	48.9	98.4	55.2	111.1	53.3	107.2	50.4	104.3	52.0	104.8
		3	49.9	98.8	50.6	101.8	Vac.	Vac.	54.5	109.7	50.2	103.9	51.3	103.6
		4	50.6	100.2	51.6	103.8	51.4	103.4	52.2	105.0	51.6	106.8	51:5	103.8
		5	52.2	103.4	51.9	104.4	54.9	110.5	55.2	111.1	Vac.	Vac.	53.6	107.4
			51.5	101.9	50.7	102.0	53.6	107.8	53.6	107.8	50.8	105.2	52.2	105.1

[^2]| | | Oper. No. 1 | | Oper. No. 2 | | Oper. No. 3 | | Oper. No. 4 | | Oper. No. 5 | | Grous | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. of
 Wk. in | Aver.
 Hourly | \% of | Aver. Hourly | \% of | Aver.
 Hourly | \% of | Aver. Hourly | \% of | Aver. Hourly | \% of | Aver. Hourly | $\% \text { of }$ |
| | Period | Output | Eff. |
| No. 9 | | | | | | | | | | | | | |
| 15 Min . A.M. Lunch, 40.67 | 1 | 64.8 | 103.2 | 68.5 | 106.2 | 63.7 | 128.2 | 64.9 | 130.6 | 59.1 | 122.4 | | |
| $10 \mathrm{Min} . \mathrm{P} . \mathrm{M}$. Rest, | 2 | 64.5 | 102.7 | 67.0 | 103.8 | 63.8 | 128.4 | 64.5 | 129.8 | 61.0 | 126.3 | | |
| 4:00 Stop | 3 | 65.3 | 103.9 | 68.1 | 105.5 | 62.8 | 126.4 | 63.3 | 127.4 | 57.6 | 119.3 | | |
| | 4 | 67.3 | 107.1 | 68.5 | 106.2 | 61.9 | 124.5 | 61.6 | 123.9 | 60.2 | 124.6 | | |
| | | 65.5 | 104.3 | 68.0 | 105.4 | 63.0 | 126.7 | $\overline{63.5}$ | 127.8 | 59.5 | 123.2 | | |
| No. 10 , | | | | | | | | | | | | | |
| 15 Min . A.M. Luach, 45.67 | 1 | 65,3 | 103.9 | 66.9 | 103.7 | 61.6 | 123.9 | 60.7 | 122.1 | 56.6 | 117.2 | | |
| 10 Min . P.1. Rest | 2 | 67.7 | 107.8 | 69.0 | 106.9 | 61.4 | 123.5 | 61.1 | 122.9 | 58.0 | 120.1 | | |
| Same as No. 7 | 3 | 62.2 | 99.0 | 62.9 | 97.5 | 58.8 | 118.3 | 60.2 | 121.1 | 56.5 | 117.0 | | |
| | 4 | 63.5 | 101.1 | 63.8 | 98.9 | 60.5 | 121.7 | 62.0 | 124.7 | 55.7 | 115.3 | | |
| | 5 | 60.1 | 95.7 | 62.9 | 97.5 | 64.0 | 128.8 | 61.7 | 124.1 | 54.9 | 113.7 | | |
| | 6 | 61.3 | 97.6 | 63.3 | 98.1 | 61.9 | 124.5 | 62.7 | 126.1 | 55.7 | 115.3 | | |
| | 7 | 62.0 | 98.7 | 63.6 | 98.6 | 65.1 | 131.0 | 64.6 | 129.9 | 51.6 | 106.8 | | |
| | 8 | 64.6 | 102.8 | 64.9 | 100.6 | 61.8 | 124.3 | 64. 2 | 129.2 | 53.0 | 109.7 | | |
| | 9 | 65.8 | 104.7 | 67.1 | 104.0 | 63.6 | 127.9 | 65.9. | 132.6 | 55.4 | 114.7 | | |
| | 10 | 63.9 | 101.7 | 64.4 | 99.8 | 62.3 | 125.3 | 64.2 | 129.2 | 56.7 | 117.4 | | |
| | 11 | 64.9 | 103.3 | 65.7 | 101.8 | 62.9 | 126.5 | 63.8 | 128.3 | 55.7 | 115.3 | | |
| | 12 | 65.5 | 104.3 | 64.5 | 100.0 | 61.2 | 123.1 | 62.1 | 124.9 | 53.3 | 110.3 | | |
| | | 63.9 | 101.7 | 64.9 | 100.6 | 62.1 | 124.9 | 62.8 | 126.3 | 55.2 | 114.3 | | |
| No, 17 | | | | | | | | | | | | | |
| 15 Minute A.M. Iunch, 41.67 | 1 | 65.1 | 103.7 | 66.6 | 103.2 | 62.6 | 125.9 | 61.7 | 124.2 | 52.3 | 108.3 | | |
| 10 Min . P.M. Rest, | 2 | 64.7 | 103.0 | 65.6 | 101.7 | 65.4 | 130.9 | 63.2 | 127.2 | 53.2 | 110.2 | | |
| Saturday A.M. off | 3 | 66.5 | 105.9 | 67.3 | 104.3 | 65.0 | 130.8 | 63.4 | 127.6 | 53.9 | 111.6 | | |
| | 4 | 66.4 | 105.7 | 67.5 | 104.6 | 62.7 | 126.2 | 62.6 | 125.9 | 56.0 | 115.9 | | |
| | 5 | Vac. | - | | |
| | 6 | Vac. | - | | |
| | 7 | 63.7 | 101.4 | 63.5 | 98.4 | 65.1 | 130.9 | 63.0 | 126.7 | 52.4 | 108.5 | | |
| | 8 | 68.0 | 108.2 | 68.5 | 106.2 | 64.4 | 129.5 | 63.1 | 126.9 | 58.9 | 121.9 | | |
| | 9 | 64.7 | 103.0 | 66.1 | 102.5 | 62.3 | 125.3 | 63.2 | 127.2 | 58.4 | 120.9 | | |
| | | 65.6 | 104.4 | 66.4 | 103.0 | 63.9 | 128.5 | 62.9 | 126.5 | 55.0 | 113.9 | | |

	No.of Wk.in Period	$\frac{\text { Oper. No. } 1}{\text { Aver. }}$		$\frac{\text { Coner. No. } 2}{\text { Aver. }}$		Oper. No. 3		$\frac{\text { Oper. No. } 4}{\text { iver. }}$		Oper. No. 5		Group
Work Per		Aver. Hourly	\% of	Iver. Hourly	\% of	Aver. Hourly	\% of	iver. Hourly	\% of	Aver.	\% of	Aver. Hourly \% of
Period \quad Wk.		Output	Eff.	Output Eff.								
No. 12												
No Luaches, No 48.00	1	61.1	97.3	62.7	97.2	62.2	125.2	62.7	126.2	56.5	116.9	
Rests	2	61.7	98.2	62.9	97.5	60.7	122.1	62.3	125.3	55.7	115.3	
Same as No. 3	3	62.6	99.6	63.9	99.1	60.1	120.9	61.9	124.5	55.2	114.3	
	4	61.9	98.7	63.4	98.3	59.4	118.3	60.5	123.0	55.7	114.3	
	5	63.0	100.5	64.4	99.8	61.8	123.1	61.5	125.0	57.3	117.7	
	6	62.9	100.3	64.0	99.2	60.4	120.3	62.4	126.8	56.2	115.4	
	7	63.3	101.0	64.5	100.0	57.7	114.9	61.2	124.4	57.9	118.9	
	8	61.8	98.6	63.3	98.1	58:0	115.5	61.3	124.6	55.2	113.3	
	9	61.0	97.3	62.8	97.4	59.6	118.7	60.4	122.8	57.3	117.7	
	10	62.9	100.3	63.8	98.9	60.1	119.7	60.6	123.2	55.2	113.3	
	11	63.9	101.9	65.2	101.1	58.3	116.1	60.6	123.2	56.4	115.7	
	12	63.2	100.8	65.1	100.9	57.7	114.9	59.9	121.7	54.6	112.1	
		62.5	99.7	63.9	99.1	59.7	118.9	61.3	124.6	56.1	115.2	
No. 13												
15 Min . A.M. Lunch, 45.67	1	65.7	104.8	67.1	104.0	61.7	122.9	61.4	124.0	60.1	123.4	
10 Min . P.M. Rest.	2	67.6	107.8	69.0	107.0	64.7	128.9	64.4	130.9	59.4	122.0	
Operators furnish	3	61.6	98.2	67.3	104.3	61.5	122.5	63.8	129.7	60.8	124.8	
Lunch. Company Fur-	4	67.1	107.0	68.7	106.5	60.5	120.5	65.5	133.1	61.5	126.3	
nishes Beverage.	5	66.1	105.4	68.0	105.4	58.9	117.3	62.3	126.6	61.6	126.5	
	6	67.0	106.9	69.8	108.2	63.3	126.1	66.4	135.0	58.4	119.9	
	7	66.5	106.1	68.8	106.7	65.1	129.7	67.3	136.8	57.1	117.2	
	8	65.0	103.7	67.7	105.0	64.2	127.9	67.7	137.6	58.6	120.3	
	9	66.6	106.2	70.3	109.0	65.6	130.7	67.9	138.0	57.6	118.3	
	10	66.9	106.7	68.8	106.7	65.5	130.5	68.8	139.8	58.2	119.5	
	11	69.6	111.0	73.3	113.6	65.2	129.9	68.4	139.0	59.1	121.4	
	12	66.3	105.7	71.1	110.2	61.8	123.1	67.5	137.2	55.2	113.3	
	13	67.4	107.5	74.1	114.9	65.8	131.1	70.5	143.3	59.6	122.4	
	14	65.2	104.0	69.5	107.8	65.1	124.7	69.9	142.1	56.8	116.6	
	1.5	65.2	104.0	69.8	108.2	64.4	128.3	69.5	141.3	59.0	121.2	

eriod			Oper. No. 1		Oper. No. 2		Oper, No. 3		Oper. No. 4		Oper. No. 5		Group	
	Work Per	No.of Wk.in	Aver. Hourly	\% of	Aver. Hourly	\% of	Aver Hourly	\% of	Aver.	\% of	Aver.	\% of	Aver. Hourly \% of Output Eff.	
	Wk.	Period	Output	Eff:	Output	Eff.	Output	Eff.	Output	Eff.	Output	Eff.		
No. 13	45.67	16	65.6	104.6	71.8	111.3	62.6	124.7	68.4	139.0	58 n 4	119.9		
Cont'd		17	70.1	111.8	74.1	114.9	64.6	128.7	69.7	141.7	60.2	123.6		
		18	70.3	112.1	73.9	114.6	64.1	127.7	69.8	141.9	61.1	125.5		
		19	65.5	104.5	70.9	109.9	62.7	124.9	69.5	141.3	57.1	117.2		
		20	70.0	111.6	73.5	114.0	68.5	136.5	72.9	148.2	60.1	123.4		
		21	67.2	107.2	73.1	113.3	66.6	132.7	72.2	146.7	57.3	117.7		
		22	67.1	107.0	73.5	114.0	65.3 -	130.1	71.7	145.7	59.3	121.8		
		23	69.1	110.2	75.6	117.2	69.1	137.6	74.1	150.6	61.8	126.9		
		24	69.5	110.8	75.0	116.3	69.1	137.6	73.4	. 149.2	65.5	134.5		

FIRST RELAY ASSEMBLY GROUP
Table Showing Division of Data of Table 1 Due to Replacing of Operators
Nos. 1 and 2 at the Beginning of Period No. 8

Period	Hrs. of Work per Wk.	No. of Wk. in Period	Second Operators Nos. 1 and 2		Operators	
			Average	Average	Average	Average
			Hourly	Per Cent of	Hourly	Per Cent of
			Output	Efficiency	Output	Efficiency
No. 8	43.17	1	60.3	95.2	60.0	121.8
15 Nin . A. M. Lunch,		2	63.9	100.3	60.6	123.1
10 Inin. P.IT. Rest,		3	63.5	99.8	59.6	121.0
4:30 Stop		4	64.8	101.7	61.2	124.3
		5	63.3	99.4	62.1	126.1
		6	65.1	102.3	61.0	123.8
		7	65.0	102.1	60.5	122.8
			63.7	100.0	$\overline{60.7}$	123.3
No. 9	40.67	1	66.7	104.7	62.6	127.1
15 Lin . A.M. Lunch,		2	65.8	103.3	63.1	128.2
10 ITin. P.M. Rest,		3	66.7	104.7	61.2	124.4
4:00 Stop		4	67.9	106.7	61.2	124.3
			66.8	104.9	62.0	126.0
No. 10	45.67	1	66.1	103.8	59.6	121.1
15 Min . A.M. Lunch,		2	68.4	107.4	60.2	122.2
10 Min . P.M. Rest		3	62.6	98.3	58.5	118.8
Same as No. 7		4	63.7	100.0	59.4	120.6
		5	61.5	96.6	60.2	122.2
		6	62.3	97.9	60.1	122.0
		7	62.8	98.7	60.4	122.6
		8	64.8	101.7	59.7	121.1
		9	66.5	104.4	61.6	125.1
		10	64.2	100.8	61.1	124.0
		11	65.3	102.6	60.8	123.4
		12	65.0	102.0	58.9	119.7
			64.4	101.2	60.0	121.9

Period	Hrs. of Work per ilk.	No. of Wk. in Period	Second Operators Nos. 1 and 2		Qperators	
			Average	Average	Average	Average
			Hourly	Per Cent of	Hourly	Per Cent of
			Output	Efficiency	Output	Efficiency
No. 11	41.67	1	65.9	103.5	58.8	119.5
15 Min . A. H . Lunch,		2	65.2	102.4	. 60.6	122.8
10 Lin . P.I. Rest,		3	66.9	105.1	60.8	123.3
Saturday A.M. off		4	67.0	105.2	60.4	122.7
		5	Vac.	-	Vac.	-
		6	Vac.	-	Vac.	-
		7	63.6	99.9	6 U .2	122.0
		8	68.3	107.2	62.1	126.1
		9	65.4	102.8	61.3	124.5
			$\overline{66.0}$	103.7	60.6	123.0
No. 12	48.00	1	61.9	97.3	60.5	122.8
No Lunches, No Rests Scme as No. 3		2	62.3	97.9	59.6	120.9
		3	63.3	99.4	59.1	119.9
		4	62.7	98.4	58.5	118.8
		5	63.7	100.2	60.2	121.9
		6	63.5	99.8	59.7	120.9
		7	63.9	100.5	58.9	119.2
		8	62.6	98.4	58.2	117.8
		9	61.9	97.3	59.1	119.6
		10	63.4	99.7	58.6	110.6
		11	64.6	101.6	58.4	118.2
		12	64.2	100.9	57.4	116.2
			63.2	99.4	59.0	119.4
No. 13	45.67	1	66.4	104.4	61.1	123.7
15 Min . A.M. Lunch, 10 Min . P.M. Rest. Operators furnish Lunch. Company furnishes beverage.		2	68.3	107.4	62.8	127.1
		3	64.5	101.4	62.0	125.5
		4	67.9	106.8	62.5	126.5

UNIVERSITY DF WISCONSIN = MILWAUKEE

[^3]

3. Weekly cutput

Table 3 and the "Total Weekly Output" graphs which follow indicate the outputs for individual operators and for the group as \& whole throughout the periods of the study. It will be seen that there has been a general upward trend in production. The tables of the rate of production show that the hourly output increased with the shortening of the working day by rest pauses and the early stop conditions. It will be noted from the weekly output graphs that the four o'clock stop and the five day week took off so mach working time that the total weekly output fell somewhat. The total output, however, remained well above the base rate. Following the weekly output graphs is an average daily output graph arranged by periods for comperison. All rest pauses were more than compensated for by the increased rate of output. In period No. 12 the operators returned to the full working day without any rest pauses whatever and the output reached its highest level up to thet time; nevertheless, when the twenty-five minutes of rest were restored in period No. 13 the totel weekly output still further increased, giving further evidence of the ability of the operator to compensate for the rest pause by increased speed.

The early periods of the test were not long enough for the production lines to reach plateaus. One cannot determine from them what further changes might have developed if these periods hed continued. This is less true for later periods; but even here it will be noticed that, although periods Nos. 7, 10 , end 13 involve the same length wofking day, the upward trend has continued through all three of these periods. Later when this upward trend has ceased it will be possible to remove it from the statisticel computations and secure more satisfactory comparisons anong the different periods.

TABTE NO. 3
FIRST RELAY ASSEMBLY GROUP
Record of Production in Equivalent to E-901 Relays
Total Weekly Outputs and Average Feekly Output by Periods of Test

			Oper. No. 1		Oper. No. 2		Oper. No. 3		Oper. No. 4		Oper. No. 5		Group
	Hes,of No. of	No. of	Total Average		Total	Average	Total	Average	Total	Average	Total	Average Weekly	Averag: Weekly
	Work	Wk.in	Weekly										
Period	per Wk	Period	Output										
No. 5 - Two 10 Min* Rests	46.17	1	2501		2602		2587		2510		2501		2540
		2	2438		2449		2710		2628		2455		2536
		3	2577		2621		2588		2578		2394		2552
		4	2478		2569		2630		2634		2427		2548
			9994	2498	$\overline{10241}$	2560	$\overline{10515}$	2629	1035G	2588	9777	2444	
$\begin{aligned} & \text { No. } 6-\operatorname{Six} 5 \\ & \text { Min. Rests } \end{aligned}$	46.17	1	2547		2580		2498		2493		2390		2502
		2	2487		2522		2510		$\dot{2} 595$		2501		2523
		3	2458		2371		2582		2553		2477		24882555
		4	2491		2434		2693		2645		2510		
			9983	2496	9907	2477	$\overline{10283}$	2571	$\overline{10286}$	2571.	9878	2469	
No. 7 - 15 Min. A.M. Lunch, 10 Min. P.M. Rest	45.67	1	2519		2506		2623		2532		2480		2532
		2	2508		2558		2641		2576		2537		2564
		3	2516*		2528		2740		2569		2484		2567
		4	2575*		2585		2641		2584		2493		2576
		5	2496		2520		2544		2505		2438		2501
		6	2435		2418		2675		2676		2301		2501
		7	2256		2271		2607		2675		2429	,	2448
		8	2437		2404		2683	2683	2799		2463		2557
		9	2433		2386		2726		2702		2558		2561
		10	2510		2371		2822		2760		2529		2598
		11	2491		2573		2861		2856		2510		2658
			$\overline{27176}$	2470	$\overline{27120}$	2465	$\overline{29563}$	2688	$\overline{29334}$	2658	$\overline{27222}$	2475	

**Operators Nos. $1 \& 2$ replaced at the beginning of this period.

Period			Oper. No. 1	Oper. No. 2	Oper. No. 3	Oper. No. 4	Oper. No. 5	Group
	Hrs, of	NO.OE	Total Average	Average				
	Work	Wk.in	Weekly Weekly	Weekly				
	per Wk.	Period	Outzot Output	Output				
No. 11 - Same as 1NO. 7, but Saturcay A.M. off	41.67	1	2721	2776	2611	2571	2181	2570
		2	2697	2732	2726	2636	2217	2602
		3	2772	2804	2709	2646	2248	2636
		4	2769	2813	2615	2608	2335	2628
		5	Vacation	Vacstion	Vacation	Vecation	Vacation	Vac.
		6	Vacetion	Vacation	Vacation	Vacation	Vacation	Vac.
		7	2656	2647	2714	2628	2183	2566
		8	2835	2857	2683	2629	2455	2692
		9	2696	2754	2596	2636	2435	2623
			$\overline{19136} 2734$	$\overline{19383} \quad 2769$	$\overline{18654} 2667$	$\overline{18354} 2622$	$\overline{16054} 2294$	
No. 12 - Same as NO. 3 (No Iunches or Hests)	48.00	1	2933	3011	2983	3008	2712	2929
		2	2962	3023	2914	2991	2676	2913
		3	3004	3067	2887	2971	2648	2915
		4	2971	3043	2853	2902	2674	2889
		5	3023	3089	2968	2952	2752	2957
		6	3020	3072	2898	2994	2697	2936
		7	3036	3094	2771	2937	2779	2923
		8	2967	3037	2786	2943	2649	2876
		9	2928	3015	2862	2897	2752	2891
		10	3020	3062	2884	2908	2648	2904
		11	3066	3129	2800	2907	2708	2922
		12	3034	3124	2768	2874	2620	2884
			$\overline{35964} 2997$	$\overline{36766} 3064$	$\overline{34374} 2865$	$\overline{35284} 2940$	$\overline{32315} 2693$	

UNIVERSITY DF WISCONSIN - MILWAUKEE

UNIVERSITY DF WISCONSIN - MILWAUKEE

UNIVERSITY QF WISCONSIN - MILWAUKEE
4. The Significance and Reliability of Variations in Output.

The reliability of changes in the average daily output under the different periods of work varies directly with the number of output readings secured and inversely with the fluctuation in output from day to day. The output data show indicate an increasing production which is obviously so great as to be statistically significant and by no possibility due to accidental variations in cutput. The hourly rate of production has increased with the shortening of the working day. Direct reference to Table NC. 3 showis that the actual output has increased in spite of the shorter hours. One naturally asks, however, whether these increases in output from period to period have real statistical significance or whether they are within the range of chance variation.

The usual statistical procedure has been followed in detormining the reliability of these comparative output Eigures in different pericds. The difference botween the average daily output for each period of work following the base period and the average daily output of the base period is compared with the probable error of that difference. A similar comparison is mado between oach period of work following the "special gang rato" period and this period.

It will be seen that there was no significant difference between the outpui of these cperators in the regular department and their output in the test room during period No. 2 while they were beine paid on the same basis and while they were getting used to the new working conditions. For all of the features of work following period No. 2, however, the actual average hourly output per week has been significantly greater than in the old department. This is true even when the working day has been shortened by one hour and twenty-five minutes during the period involving four oicleck step. Production during the five day week was practically the same as that for the four oiclock stop.

The following pages illustrate the statistical procedure, and Table No. \& presents the results of the computations.

Consider the daily output data for period. No. 1. A daily average is computed by dividing the equivalent total number of relajs produced in the pericd by the number of days in the period. The probable error, P.Z., that is, the expected chance fluctuation of the averace (as compared with the average for another group of persons taken from the same main group) is computed by taking 0.674 times the square root of the sum of the squares of the individual differences botween the average and each day's output, and dividing this proauct by the number of days in the period, or -
$0.674 \sqrt{\text { sum of squares of individual differences from average }}$ number of days in period

The probable error for poriod No. 2 is computed in the same fashion. The probable error in the difierence between the averages for the two periods is the square root of the sum of the squares of the individual probable errors.

Now it is desired to know whether the difference between the averages for the two periods is significant, that is, whether it is mere than a moro chance difforence. The criterion for this is based upon the magnitude of the quotient obtainod by dividing the difforence between the averages by the probable orror of the difforence,
difference botween averages
probable orror of difforonco
When this ratic is oqual to one thoro is an oven chanco that the differenco betwoen the averages is puroly accidental. When tho ratio equals four thore are 99.7 chances in 100 that the difforonce is significant. When the ratic is four or moro, complate statistical reliability is assured.

TABIE NO. 4
RTII ABIIITY OF COMPARATIVE AVERAGS OUTPUTS
ALI FIVE OPWRATORS

	Average			Later Periods Compared with Output in Regular Department				$\begin{aligned} & \text { Tiater Periods Compared with output } \\ & \text { in Special Gang Rate Period } \\ & \hline \end{aligned}$			
Period	Daily Output	\% of Base Rate	$\left\lvert\, \begin{aligned} & \text { P.E. of } \\ & \text { Averagge } \end{aligned}\right.$	$\begin{gathered} \text { Periods } \\ \text { Compared } \end{gathered}$	$\begin{aligned} & \text { Diffe of } \\ & \text { Averages } \end{aligned}$	$\left[\begin{array}{l} \text { P. F.of } \\ \text { Diff. } \end{array}\right.$	$\frac{\text { Diff }}{P_{0} \operatorname{D.DSff}_{0}}$	Periods Compared	$\begin{aligned} & \text { Diff. of } \\ & \text { Averages } \end{aligned}$	$\begin{aligned} & \text { P.E.Of } \\ & \text { Di.ff. } \end{aligned}$	$\frac{\text { Diff. }}{\text { P. E.Diff. }}$
No. 1-Base Period in Regular Department.	433	100	2.20								
シo. 2 - Introduction to Test Room	432	99.8	2.40	$\begin{gathered} \text { No. } 1 \\ \text { vs., } \\ \text { No. } 2 \\ \hline \end{gathered}$	-1	3.26	. 31				
No. 3 - Special Gang Rate	445	102.8	1.63	$\begin{gathered} \text { No. } 1 \\ \text { vg. } \\ \text { No. } 3 \end{gathered}$	12	2.74	4.38				
No. 4 - Two 5 Minute Rests	448	103.5	1.60	$\begin{aligned} & \text { No. } 1 \\ & \text { vs. } \\ & \text { No. } 4 \end{aligned}$	15	2.72	5.51	$\begin{gathered} \text { No. } 3 \\ \text { vs. } \\ \text { No. } 4 \end{gathered}$	3	2.28	1.32
No. 5 - Two 10 Minute Rests	465	107.4	1.93	$\begin{aligned} & \text { No. } 1 \\ & \text { vs. } \\ & \text { No. } 5 \end{aligned}$	32	2.93	10.91	$\begin{aligned} & \text { No. } 3 \\ & \text { vs. } \\ & \text { No. } 5 \end{aligned}$	20	2.53	7.90
No. 6 - Six 5 Minute Rests	457	105.5	1.98	$\begin{aligned} & \text { No. }{ }^{2} \\ & \text { vo. } 6 \\ & \text { No. } 6 \end{aligned}$	24	2.96	8.11	$\begin{aligned} & \hline \text { No. } 3 \\ & \text { vs. } \\ & \text { No. } 6 \end{aligned}$	12	2.56	4.69
No. 7-15 Minute A.Ni. Lunch, 10 Minute P.M. Rest	464	107.1	1.19	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } ? \end{gathered}$	31	2.50	12.40	$\begin{aligned} & \text { No. } 3 \\ & \text { vs. } \\ & \text { No. ? } \end{aligned}$	19	2.02	9.40
No. 8- Same as No. 7, but 4:30 stop	484	111.8	1.07	$\begin{gathered} \text { NO. } 1 \\ \text { vS. } \\ \text { NO. } 8 \end{gathered}$	51	2.45	20.80	$\begin{aligned} & \hline \text { NO. } 3 \\ & \text { vs. } \\ & \text { NO. } 8 \end{aligned}$	39	1.95	20.00
No. 9 - Same as No. 7, but 4:00 Stop	469	108.3	1.16	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } 9 \end{gathered}$	36	2.49	14.48	$\begin{aligned} & \text { No. }{ }^{3} \\ & \text { vs. } \\ & \text { No. } 9 \\ & \hline \end{aligned}$	24	2.00	12.00

	Averace Daily Output	\% of Base Rate	$\begin{aligned} & \text { P.B. of } \\ & \text { Average } \\ & \hline \end{aligned}$	Tater Periods Comparad with Output in Regular Department				Later Periods Compared with Outputin Spacial Geng Rate Poriod			
				Periods Compsred.	Diff. of Averaces	$1 \mathrm{P} .3 .0 \mathrm{~F}$ Diff.	$\frac{\text { Dinfo }}{\text { P. } 1 . \operatorname{Difi} 0}$	Periods	Difi. OI Avaracies	P. B. Of Diff.	$\frac{\text { Diffe }}{\text { ofinf }}$
Poriod					Avorages				Averases		.3.Diff.
No. 10 - Same as No. 7 (Check)	515	118.9	. 98	$\begin{aligned} & \text { VS. } \\ & \text { No. } 10 \end{aligned}$	82	2.41	34.00	$\begin{gathered} \text { vs. } \\ \text { No. } 10 \\ \hline \end{gathered}$	70	1.90	36.80
No. 11 - Same				No. 1				No. 3			
No. 7 but Sat. A.M.	528		1.50	vs.	95	2.66	35.7	vs.	83	2.21	375
	52										7. 5
No. 12-Same as No. 3, no rests or				$\text { No. } 1$ vs.				No. 3 vs.			
lunch	534	123.4	1.07	No. 12	101	2.45	41.2		89	1.95	45.7

Tron Period	$\begin{aligned} & \text { Average } \\ & \text { Daily } \\ & \text { Output } \end{aligned}$	$\%$ Of Base Rate	P. D.0f Average	Iater Output Periods Compared	Iater Periods Compared with Output in Regular Department		ed with artment Diff. H.Diff:	Later गeriods Compared with output in Special Cang Rate Period			
No. 1-Base period in Regular Department	431	100	2.15								
No. 2 - Intraduction to Test Room	438	101.6	2.71	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } 2 \end{gathered}$	7	3.46	2.02				
No. 3 - Special Gang Rate	455	105.6	1.12	$\begin{aligned} & \hline \text { No. } 1 \\ & \text { VS. } \\ & \text { No. } 3 \end{aligned}$	24	2.42	9.92				
No. 4 - Two 5 Minute Rests	453	105.1	1.73	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } 4 \end{gathered}$	22	2.76	7.97	$\begin{gathered} \text { No. }{ }^{3} \\ \text { vS. } 4 \\ \text { No. } 4 \end{gathered}$	-2	2:06	. 97
No. 5-Two 10 Minute Rests	467	108.4	2.11	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } 5 \end{gathered}$	36	3.01	11.98	$\begin{gathered} \text { No. }{ }^{3} \\ \text { vs. } \\ \text { No. } 5 \end{gathered}$	12	2.39	5.02
No. 6 - Six 5 Minute Rests	461	107.0	2.54	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } 6 \end{gathered}$	30	3.33	9.01	$\begin{aligned} & \text { No. } \\ & \text { vs. } \\ & \text { No. } 6 \end{aligned}$	6	2.78	2.16
No. $7-15$ Minutes A.M. Lunch, 10 Minute P.M. Rest	475	110.2	1.45	$\begin{gathered} \text { NO. } 1 \\ \text { vS. } \\ \text { NO. } 7 \end{gathered}$	44	2.59	17.00	$\begin{gathered} \text { NO. } 3 \\ \text { vs. } \\ \text { NO. } 7 \\ \hline \end{gathered}$	20	2.83	10.92
No. 8 - Same as No. 7, but 4:30 Stop	474	110.0	1.14	$\begin{aligned} & \text { No. } 1 \\ & \text { vs. } \\ & \text { No. } 8 \end{aligned}$	43	2.43	17.70	$\begin{aligned} & \text { NO. }{ }^{3} \\ & \text { vO. } 8 \\ & \text { NO. } 8 \end{aligned}$	19	1.60	11.90
No. 9- Same as No. 7, but 4:00 stop	455	105.6	1.60	$\begin{gathered} \text { No. } 1 \\ \text { vs. } \\ \text { No. } 9 \end{gathered}$	24	2.68	9.02	$\begin{aligned} & \text { No. } 3 \\ & \text { vs. } \\ & \text { NO. } 9 \end{aligned}$	0	1.95	0
No. 10 - Same as No. 7 (Check)	500	116.0	. 90	$\begin{aligned} & \text { No. } 1 \\ & \text { vs. } \\ & \text { No. } 10 \end{aligned}$	69	2.33	29.60	$\begin{aligned} & \text { No. } 3 \\ & \text { vS. } \\ & \text { No. } 10 \end{aligned}$	45	1.44	31.20

Period.	Average Daily Ou.tput	\% of Base Rate	P. Average	Later Periods Compared with Output in Regular Department				Iater Periods Compared with nutput in Special Gang Rate Period			
				Periods Compared	Diff. Of Averages	$\left[\begin{array}{l} \text { P. T.0i } \\ \text { Diff. } \end{array}\right.$	$\frac{\text { Diff: }}{\text { P. } \mathrm{Diff}}$		$\left\lvert\, \begin{gathered} \text { Difie of } \\ \text { Averaces } \end{gathered}\right.$	$\begin{aligned} & \mathrm{P} \cdot \mathrm{T.0f} \\ & \mathrm{Biff} \end{aligned}$	$\frac{\text { Diffe }}{\text { P. E.Diffe }}$
No. 11 - Same as				No. 1				No. 3			
No. 7 but Sat. A.M.				vs.				vs.			
Off	508	118.1	1.56	No. 11	77	2.66	29.0		53	2.92	27.6
No. 12 - Same as No. 3 - No lunch or				$\begin{gathered} \text { Ne. } 1 \\ \text { Vs. } \end{gathered}$				$\begin{aligned} & \text { No. }{ }^{3} \\ & \text { vs. } \end{aligned}$			
Rest	517	120.1	1.33	No. 12	86	2.52	34.1	No. 12	62	1.74	35.6

5. Speed Tests.

On August 30, 1928, the five girls in the special testing room working on the assembling of relays were given the pegboard and. finger-dexterity tests. Their scores are shown below. In column 1 for each test is shown the absolute score, and in column 2 is shown the percentage of 117 other assemblers and bench hands with two or more years of service who made the same score or less:

Oper.	Name	Pegboard (1) No. Pegs	$\begin{gathered} \text { Test* } \\ \text { (2) } \\ \text { Rel. } \\ \text { Score } \end{gathered}$	G. E. Finger-Dexterity Test**			
				Dominan (1)	t Hand (2)	$\begin{aligned} & \text { Minor } \\ & (1) \end{aligned}$	Hand (2)
					Rel.		Rel.
				Time	Score	Time	Score
2		20	97	5.351	99	6.57\%	85
1		19	93	$\left(I_{1}\right) 6.25^{\circ}$	61	(R)6.80'	75
4		17	73	$6.06{ }^{\prime}$	81	7.12	53
3		19	93	6.87	50	7.28	38
5		13	26	7.42^{\prime}	10	8.82	36

It will be noticed that the scores for the first four girls tend to be in the upper 50% of the scores for other siris on similar work, while the scores for the fifth gírl are all in the lower 50%.

No. 5 actually does 90% as much work as No. 2 al though in speed tost she did only 65% as much. This fact suggests that makes up for lack of speed by a greater consistency of outpui, and it will be shown later (by the variation datal that this is the case.

* This consists of picking up small pegs and placing one in each hole of the board. The score is based on the number of pogs placed within a ̇ime limit.
** This consists of picking up small pegs and placing three in each hole of the board. The score is expressed as the number of minutes required to place a definite number of pegs.

B.

VARIATION IN OUTPUT DURING THE DIFFSRSNT DAYS OF THE WBGK.

It was believed that further li.ght would be shed upon working efficiency by a study of output on different days of the week. Zach operator shows appreciable variation in output frorn day to day. This is seen by reference to the basic data table. Wide variation also appears in the shape of the curves showins comparative output by days of the week for each operator when one type of working period is compared with another. Such a daily variation curve for operator No. 5 is included herewith (D V I). Note particularly that although period. No. 7 is like period No. 10 in the arrangement of the working day the shape of the curve for these two periods is decidedly different.

The second graph ($D \mathrm{~V}$ 2) shows the average output by days of the week for all five operators by periods of the experiment. It will be noted again here that although period No. 7 and period. No. 10 are alike in hours workec. and in rest pauses, the shape of the curves are markedly different. Because of the wide variation shown by each operator, one feels that no one of the curves is extremely significant.

The wide variation between the curves for individual operators covering the same periods is shown in Eraph $D V 3$.

One notices that the curve of the grand average for all operators for ten periods ($D V 2$ and $D V 3$) is a smoother curve showing a definitely lower procuction rate on Monday and Saturday and a uniform production rate on Tuesday, Wednesday, Thursday, and Friday, although the production on Wednesday and. Thursday is very slightly higher than for Tuesday and Friday. This composite curve shows that when enough data are brought together to eliminato individual variations, production is definitely and consistently lower on Mondays and Saturdays than on the other days of the week, and that the rate of production on Tuesday, Wednesday, Thursday, and Friday is rather constant.

One naturally looks for evidence of a more sustained output during the later days of the week when the day is shortoned by rest pauses and early stops. Certainly this reduced number of hours in the working day does not tend to increase the Saturday output because the relative drop in Saturday output for periods Nos. 8 and 9 (having the shortost working day) is as great as for any other period. To be sure, the upward trend in output
continues until Friday for these two periods, but one is inclined to regard this as more accidentol than significant when he notices the continued upward trend until Saturday in period No. 4, the high Friday output in period No. 10 (in contrast to the Friday output in period No. 7), and the fact that the srand averase shows a Friday output which is not far below the high point for the week. In other words, there is some indication that the shorter workint day tends to keop up the output until Friday, but the inconsistency of the curves (note particularly periods Nos. 4, 5, and 6), and the high Friday output in period No. 10 make it difficult to believe that there is a cumulative fatigue which malies a low friday output inevitable, at least when there is a lunch and rest pause.

One is naturally interested in comparins the output curves for the individual operators to see whether their fluctuation auring the different days of the week is related to their physical condition and their efficiency. It will be seen that the present operators Nos. 1 and 2 have the hishest output and show a progressive incraase in production from Monday until Friday. Health tests show that these girls are in good physical conoition. on the other hand the first operator No. $2($) and operator No 5 have been inferior in physical condition to the other firls on the test. Their output is below that of the other operators (except the first No. 1 operator) and their curves alone show a general declino from the beginning to the end of the weok. Operator No. 5 is the only one whose Menday output is consistently hisher than that for any other day in the week. The averaces for the other operatucrs show Monday output to be distinctly lower than Tuesday cutput. In the case of these two cperators one misht feel that the daily cutput curve shows evidence af cumulative fatisue. In the case of the present operators Nos. 1, 2, 3, and 4 simjlar curves distinctly indicate the absemon cummetive fatigue. The comparative daily output curves of would sugsest that there may be a relationship be and a low catus physical health and declining output durine the week although it may be, on the other hand, that the mental state rather than the physica state of the individual was the important factor.

At present one is inclined to conclude that:
2. A study of the output for the different days of the week does not suggest cumulative fati.gue.
2. Llthough there is high veriation, the only days which show a marked and consistently lower production are Monday and Saturday.
3. The reduced production on those two days is probably due to mentel precccupation; i.e., to montal rathor than physiolegical status.

The reasoning in arriving at this last tentative conclusion is as follows: Although the low Monday output might be due to practice effect, that on Saturday could not. There is indication that the low Monday output is not a matter of practice because frequently an operator has a Monday cutput which is greater than that for any other day for the week in question. Furthermore, three of the 35 highest output records for fifteen minute periods occurred on Monday. It would seem, therefore, that it is not lack of manual dexterity arising from the Sunday rest which causes a low Monday output. There is not evidence of cumulative fatigue as the week advances. No other reasonable explanation appears for low Monday and Saturday output except mental precccupation.

FIGURES FOR CHART D V 1

Period No.	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	436.5	424.0	442.9	421.5	424.5	389.0
2	433.6	430.2	429.0	432.6	422.	413.2
3	450.1	456.8	447.5	445.3	434.9	424.9
4	439.8	433.5	441.5	446.5	445.5	424.0
5	462.0	460.5	437.8	457.5	453.5	429.8
6	460.3	S65.0	451.0	458.8	¢56.8	441.8
7	456.3		465.1	465.4	451.8	44.8
8	453.1	451.7	410.7	453.1	451.4	430.6
9	488.0	-56.3	430.3	450.3	44.7	429.8
10	476.2	464.5	\$63.6	457.6	459.8	557.
FIGURES FOR CHART D V 2						
1	480	4×1	455	436	425	414
2	431	≤ 35	432	435	432	428
3	444	451	4.53	448	445	444
4	451	453	448	455	455	450
5	468	474	465	474	467	468
6	453	473	467	468	460	450
7	464	467	474	473	469	456
8	477	489	495	495	497	474
9	466	469	4776	480	481	462
10	515	518	520	517	523	515
All*	468	474	475	475	475	464
FIGURES FOR CHART D V 3						
First 7 -	438.2	445. 4	446.5	445.2	443.6	436.7
" 7 -	453.3	445.5	449.1	453.8	441.2	431.4
" 10 -	471.5	482.6	487.2	484.5	486.6	482.6
" 10	476.0	480.6	486.5	483.2	485.9	477.3
"• 7	455. 5	451.8	449.4	452.5	447.7	434.5
8,9,10-	502.5	514. 4	521.1	524.8	527.3	508.6
8,9,10-	512.6	527.3	531.0	531.1	537.0	525.8
8,9,.10-	486.8	503.1	507.0	502.0	509.5	491.3
8,9, $10-$	504.0	503.8	511.9	505.5	510.7	497.1
8,9, 10 -	464.3	\$55.7	450.8	455.0	455.9	444.2
All*	467.9	$\mathrm{c}_{5} 73.7$	475.06	475.14	474.0	464.7

UNIVERSITY DF WISODNEIN = MILWAUKEE

ThBIE
SUPPLEMTNTAL DATA OIT DUTTYT BY DAYS OF THE WERK FIRMT REMX"ASSWMBLY GROUF
(Compari son of average Gitpats of Individual Operators For Different Days of ihe, Weok pentod No, IL

	Operator					
	\#1	\#2	䉼	\#4	\#5	$\begin{aligned} & \text { Ave for } \\ & \text { Group } \end{aligned}$
Monday	531.8	539.8	505.9	526.3	491.2	519.0
Tuesday	546.0	558.9	521.5	"34.2	503.4	532.8
Wednesday	554.7	562.9	531.5	540.5	499.6	537,8
Thursday	557.4	571.3	52\%.7	537.1	484.5	535.8
Friday	562.6	574.8	532,0	544.7	485.8	539,9
Saturday	556.2	578.8	528,1	538.5	480.3	536.8

One significant fact which appears in this table for period No. 12 (full $8-3 / 4$ hours working day) is the higher Saturday output as compared with the other features. This furnishes further evidence against the existence of cumulative fatigue. The explanation of this improvement may lie in the desire to increase earnings just before the Christmas holidays.
C. VARIATION IN OUTPUT BY HOURS OF THE DAY

How does output vary during the different hours of the day? Is the shape of the output curve for different days the same? Has there been any chenge in the shape of this output curve during the different periods of the study?

In order to answer these questions, computations and averages have been prepared from the output data for each successive fifteen minutes of the working day. These data are presented in the form of the following five graphs.

These data curves cover Tuesday, Wednesday, Thursday, and Friday, but not Mionday and Saturday because these two days have been found to be not comparable with the other four.

A-1 The zverage fifteen minute output for each operator over the last three weeks of period No. 7.

A-2 The average fifteen minute output for all operators over the last three weeks of period No. 3 and period No. 4.

A-3 iverage fifteen minute output for all operators during the last three weeks of period No. 5 and period No. 6.

A-4 Average fifteen minute output for all operators during the last three weeks off period No. 7.

A-5 Averege fifteen minute output for all operetors during the last three meeks of period No. 8, and period No. 9.

A study of these graphs reveals the following facts:

1. The output curves by fifteen minute periods vary widely in shape when we compare different days, different operators, and different features.
2. The afternoon output shows an appreciable improvement as comparcd with the forenoon output during the later featurcs of the study where rest and lunch periods have been introduced and where the working day has been shortened.

UNIVERSITY DF WISCDNSIN - MILWAUKEE

UNIVERSITY DF WISCONSIN = MILWAUKEE
D. The following table shows that three of the four operators working upon flat type relays have a slightly higher hourly output in tho afternoon than in the forenoon during the first twentymour wecks of period No. 13. Computations aro being made for operator No. 5 for this period and for other operators for other periods, but are not yet completed.

TABIE
COMPIRISON OF MORNTNG NIND AFTERNOON PERFORMANCES
Six Months - Nov. 26, 1928, through May 25, 1929.

	Operator NO. 1	Operator No. 2	Operator NO. 3	Operator No. 4
i. M. iverage				
Hourly Output	60.7	64.6	59.8	62.4
P. N. Average				
Hourly Output	61.7	64.8	57.3	62.8
Percentage				
Difference				
A.M. to P.M.	- 1.6%	-. 31%	+4.2\%	-.64\%

E. UNIFORIITY OF PR:2FORILINCE

The previous progress reports (sec Appendix A of this report) have described a method by which an index of uniformity of performance is computed by measuring the tape exactly for fifteon minute intervals and detormining the variation in output for each fifteen minute interval as compared with the average fifteon minute output for the day. Thesc date were computed until the beginning of the five day woek, poriod No. 11. It took se mach time to count the tape, however, that the computations were discontinued at that time.

Trial computations of the variation by half hour intervals were made in the hope that comparable results could be obtained with a bricfer method. It was found, however, thet variation by half hour intorvals did not check the figures prcviously obtained by fifteen minute intervals and did not give such a good picture of the fluctuation in the rate of production. No computations of variation were made during the five day week, period No. ll, but computations werc made during the first five weeks of period No. 12 in order to see whether there was a change in variaition when the operators retumed to a full length day without rest periods.

The follorine tablc indicates the trend of the variation in performance for the periods shotm. The figuros are given by morning spell, afternoon spell, and the whole day, for individual operators.

Oper No.	Period No. 3 Special Gang Rate			Period No, 4 Two 5 Minute Rests			Period No. 5 Two 10 Rinute Rests			Period No, 6 Six 5 Minute Rests		
	A.M.	$\mathrm{P}_{\mathrm{p}} \mathrm{M}_{\text {c }}$	Day	A.M.	P.M.	Day	A.M.	P.M.	Day	A.M	P. M	Day
1	5.1	4,2	9.3	2.9	3.2	6.1	6.3	5.7	12.0	5.6	3.9	9.5
2	5.4	7.2	12.6	3.6	3.8	7.4	6.0	4.8	10.8	3.8	4.4	8.2
3	3.2	5.9	9.1	2.2	3.6	5.8	2.0	3.3	5.3	1.6	2.3	3.9
4	2.1	2.5	4.6	1.6	3.7	5.3	3.2	4.2	7.4	1.5	2.0	3.5
5	5.4	3.7	9,1	3.7	3.0	6.7	2.5	3.3	5.8	2.7	3.1	5.8
Oper.No.	Period No. 7			Period No. 8*			Period No. 9			Period No. 10		
	15 Min . A. M.			15 Min . A. Mo			15 Jin. A. M.			15 Min A. $\mathrm{M}^{\text {c }}$		
	Lunch, 20 Min . P.M.			Iunch, 10 Min .			Iunch, 10 Min .			Iunch, 10 Min. P.M.		
				P.M. Rest,			P.M. Rest,					
	20 Min: Pom.			4830	Stop					Rest		
	A.M.	P. $\mathrm{M}_{\text {. }}$	Day	A.M.	P.M.	Day	A.M.	P.M.	Day	A. $\mathrm{M}^{\text {a }}$	P.M	Day
1	3.7	3.8	7.5	*2.2	2.2	4.4	2.0	2.2	4.2	2.9	4.4	7.
2	3.3	4.0	7.3	*3.3	3.3	6.6	3.7	3.6	7.3	4.7	6.3	11.
3	2.2	3.8	6.0	1.7	2.7	c. 4	2.0	2,3	4.3	1.7	3.3	5.
4	1.5	3.1	4.6	0.5	1.3	1.8	1.0	1.4	2.4	1.3	2.6	
5	3.4	3.7	7.1	2,6	2.0	4.6	2.5	2.7	5.2	2.9	2.5	

Oper.			
No.	A. $\mathrm{IN}_{\text {I }}$	P.M.	Day
1	4.2	6.3	10.5
2	3.8	7.4	11.2
3	2.0	5.1	7.1
全	1.7	1.4	3.1
5	2.3	2.8	5.1

* Operators No. 1 and No. 2 replaced at beginning of Period No. 8.

Oper. No.	All Periods	Last Three Periods Only
	4.1	
3	5.6	5.1
5	6.1	5.2
1	6.6^{*}	7.3
2	9.0^{*}	9.8

* These figures for operators Nos. 1 and 2 are for periods Nos. 8 , 9, 10, and 12 and are not directly comparable with the figures of operators Nos. 3, 4, and 5 which are averages for all periods. It will be seen, however, from the next column that the relative rating of the different operators remains fairly constant.

The following table shows the average relative variation for the group of five operators in terms of indexes of uniformity of performance for different periods.

Because operators Nos. 1 and 2 were changed, a separate column has been included to give the average index of uniformity of performance by periods for operators Nos. 3, 4, and 5.

TABIT
TOMAT AVERAGE VARIATION FOR THE GKOUP

Period Number	P Period or Feature	Total Average Variation	
		Five	Oper.3,4,
		Operators	and 5
8			Only
	**15 Min. A.M. Iunch, 10 Min . P.M.		
	Rest, 4:30 stop	4.4	3.6
9	15 Min A. ML . Lunch, 10 Min . P. M .		
	Rest, 4:00 Stop	4.7	3.96
6	Six 5 Minute Rests	6.2	4.4
4	Two 5 Minute Rests	6.3	5.9
7	15 Min . A. M_{0} Iunch, 10 Min. P.M. Rest	6.5	5.9
10	15 Min . A.M. Iunch, 10 Min . P.M. Rest	6.5	4.7
12	No Lunches, No Rests	7.4	5.1
5	Two 10 Minute Rests	8.3	6.1
3	Special Gang Rate	8.9	7.6

** Operators Jos. 1 and 2 replaced at beginning of this period.

It will be scon that there has been an appreciablo variation in performance and that in general the uniformity has improved as the day has boon shortened. (The fact that the uniformity for the $4: 30$ stop is better than that of the $4: 00$ o' clock stop rould seem inconsistent with this general statement, but it should be romembered that operators Nos. 1 and 2 were changed e.t the beginning of the 4:30 stop period and probably the new operators were working particularly hard. It is possible that this situation accounts for the splendid record of uniformity during the 4:30 stop period.

It will be noted that period No. 12 shows appreciably lower variation of output than period No. 3, which wes also a full length day without rest pauses.

The greater uniformity in output when rest pauses are present adds emphasis to the suggcstion that operators vary their pace or take brief rost pauses on their ow account when working long hours without rest pauses.

It will be seen from the uniformity of performance records of different operators that the present operators Nos. 1 and 2 who are the speediest and have the highest total output have the worst indexes of uniformity. There is wide veriation in the performance of different operators, but the most uniform workers do not have the highest output.

F. QUALITY OF PRODUCTION

The output date given previously are free from complication because of variation in the quality of the product since all output figures are given in terms of perfect E-901 relays assembled. Each girl repairs her imperfect relays during regular working time. There has been no significant change in the amount of repair work necessary.

It was determined by inspecting the individuel output records that there is no perceptible increase in the number of imperfect relays directly after the operator changes from one type of relay to another. It has frequently been noted that a girl increases the number of defective relays because of carelessness until her number of imperfect relays becomes large for some particular half-week whereupon by proper application she greatly reduces the number of repairs.

G. EFFECT UPON OPERATORS

1. Health

Regular physical examinations of operators in the test room have been continued. Data accurulated since the last progress report are not included herewith, but no significant changes in health status are observed in the assembly operators.

Absenteeism has been markedly reduced among these operators since they have been working in the test room. The following table is a record of absenteeism for these girls in the regular department and durlng the first sixteon months of the test. An item here represents any case in which the girl was sick, excused, or late. Individual records follow:

In sumarizing the above table it is found that the group averaged 15.6 absence items a year in the fegular department and 3.2 absence items per year in the test room, This reduction in the number of absences to about $1 / 5$ the former amount was quite unconseious on the part of the operators. They had not realized that their absence records had improved. The record is, therefore, all the more significant since it indicates an improvement in health or in mental attitude toward work, rather than a conscious attempt on the part of the operators, as the fartor underlying improved attendance.

[^4]For the sake of comparison, data have been gathered concerning absence and lateness for a group of thirty-three girls in the regular Relay Assembly Department. These girls have consecutive numbers on the Company attendance records and represent a random sampling.

The following table shows the comparative standing of the test room group and the regular dopartment group:

TABLE \qquad

ATTENDANCE IRREGULARITIES

Comparison of Test Roan to Departmeg 6329
Six Month Pariod - Nov. 1, 1928 Through Apr. 30, 1929
Failure
Sick Excused Absent Late To Register

Tost Room Total (6 girls)	12	da		days		days	7	me	2	s
Average Per Individual	2.0	"	. 25	"	. 42	"	1.17	"	. 33	
Dept. Total (33 girls)	$23 \frac{1}{2}$	"	201	"	40	${ }^{\prime \prime}$	34	"	30	*
Average Per Individual	7	"	. 62	"	1.21	"	1.03	"	. 91	

Irregularities of
Test Room Group on Basis

of	100 Persons	200	25	42	117

Irregularities of
Department 6329 Group

on Basis of	100	Persons	700	62	121

With respect to these itoms, it will bs noticed that the girls in the rogular department have about throe and one-half times as many sick absences, about two and one-half times as many excused absences, about three times as many other absences, and about three times as many failuros to register.

A second set of blood pressure readings, taken on November 14, 1928, also indicate the maintenance or improvement of the health status. The following graphs include - (1) the chart made for operator No. 2 from the readings of April 25, 1928, and (2) the average blood pressure indexes for various groups of workers compiled by Dr. Mayo. These two charts were in the previous progress report. We have also added here (3) the 14. 1925 , and (4) a second ehart giving the blood pressure index for endi operator and for the group of operators as a

It will be recallod that the irdex hire used is a product of the pulso pressure and the pulse petren it is the belief of those who have worked most with this test that the index tends to remain low and relatively steady in those operators who are working within their physical capacity. On the other hand, it is believed that operators who are working beyond their capacity will have an irregular index which tends to go up as fatigue increeses toward the end of the day.

It will be seen by comparing the tro charts for operator No. 2, which follow, that both sets of readings are highly satisfactory. While the second set of readings is slightly higher it will be noted that the high points are at the beginning of the forenoon and afternoon work period while the index steadily declines as production increases and the day advances.

Comparison of the charts showing the index for individual operators and the average for the group as a whole with the "average height of index" chart for other groups of workers shows that these operators at the last readings, as well as at the first, have a better record than the other groups of workers studied by Dr. Mayo since the index remains lower and has a satisfactory downward tendency as output increases and the day advances. These readings indicate that the health status is being satisfactorily maintained.
6/a

UNIVERSITY OF WISCONSIN - MILWAUKEE

UNIVERSITY DF WISCDNSIN = MILWAUKEE

UNIVERSITY DF WISCONSIN - MILWAUKEE

Data concerning the daily practices of operators with respect to food, sleep, and activity have been gathered. Some of these original date were included in the previous progress report. Further data are not added in this supplementary report because there is nothing nem of special signiticance. There has boen no important change in the daily habits of the operators outside the factory. Their program of living is fairly good. A typical day's schedule taken from their report includes: rising at six o'clock, a light breakfast or sometines no breakfast, the day's work at the factory, one to two hours of housework, a walk of one to two miles, occasional special entertainment, and retiring at $10 o^{\prime}$ clock. It has been already pointed out that the mid-morning lunch supplements the breakfast and makes the noon lunch lighter with a consequent improvement in rorking condition in the ofternoon. Hours of slesp ars widely varying and a discussion of their effect is included slsewhore in this report.
2. Mental Attitude

The mental attitude of the opserators has matorially, consistently, and continually improved under the experimental conditions. The previous progress report discussed this itom in detail pointing out the specific conditions in the test room which tended to improve the contentment of the worker end her attitude toward her work.

The recording of comments of operators has been continued, but these details are not included in the present supplementary report. The significant fact is a continuance of an ideal mental attitude on the part of the operators and the further development of understanding and confidence between the operators and those in charge of the experiment.

The following typical and selected coments with reference to period No. 12 (48 hour week) reflect (a) the dread and dislike of monotony, (b) the fecling of fatigue (or ennui) during the $8-3 / 4$ hour day, and (c) the difiiculty in getting a hearty breakfast. The following comments were mado near the end of period No. 11 (5 day week):
"Nothing to look forward to, no eats, nc rests."
"It is not so much the working on faturdey mornings as
it is the loss of the rost periods. I dread that."
"I'll have to get up at five to get breakfast."

The following coments were made during period No. 12 (48 hour woek):
"I always feol tired now during the day. The noise is torrible."
"Too monotonous. I'll go crazy."
"I'm so tired."
"Days seem long."
"More tirod now."

SECTION III

THE INTERPRETATION OF RESULTS

A. ACCIDENNAL FACTORS IN WORKING CONDITIONS WHICH MAY EFFECT RESULIS

It is of obvious importance to consider every possible cause for fluctuations in output when interpreting such data as has been collected in this study. Any new or recurring condition which appears during the experiment is worthy of examination in safeguarding the interpretation of results. It will be seen that a knowledge of the effect of such factors as are here considered (Will also be worth while from the standpoint of industrial management.

1. Seasonal Variation

In the previous progress report data were presented showing the average monthly earnings for a gang of about 5500 piece work operators over a period of three years and a separate output curve for a single year covering the work of 29 operators from March, 1927, to March, 1928. (See Appendix B of this report.) These curves all showed a consistent seasonal fluctuation with the high output in November each year and a smaller peak in April or May while the low points of the curve were January and midsummer. These fluctuations in earnings were of a magnitude equal to about 2% of the baso rate. These variations are not enough to affect the experimental data although some definite improvement in output in fall and spring may be expected.
2. The Effect of Changing the Type of Relay Upon which the Girls are Working

A special study was made to determine the effect upon output caused by changing the type of relays upon which operators there working. This study was made because the girls in the test room were kept at work upon those types of relays which were being made in large quantity at Hawthorne whereas the girls in the large gang outside worked upon many different kinds of relays and consequently changed types frequently. It seemed plausible that it might take the operator a few hours to accustom herself to working on a new type of relay. If this were the case then the less frequent changes of type in the test room would be a factor in producing the increased output from these operators.

In order to test this hypothesis the output records for operators Nos. 1, 2, 3, and 4* were checked for each instance in which the girl changed from one type of relay to another, working on the second type of relay for at least a full day thereafter. Then the hourly output for the operator during the first hour's work on the new relay and the average hourly output during the first full day's work thereafter were computed. If changing the type of relay is a handicap to output, one would expect to find a distinctly lower output for the first hour after the change than the average for the first full day. The data collected are shown on the following pages. It will be noted that:
(a) The output for the first hour after a change of type is often higher than the average for the first full day thereafter.
(b) Elor two of the four operators the average out put for the "first hour" was higher and in the other two operators it was lower than the average for the "first day".
(c) There is no significant difference in the output for the "first hour" as compared with that for the "first day."

We may conclude that the chenge from one type of relay to another familiar type does not slow up production. Apparently if greater difficulty is experienced in assembling the second type of relay, it is compensated for by greater attention. Occasionally operators in the regular shop may have very frequent changes and unfamiliar types, but in general they would work at least an hour on a type. Fewer chenges in type does not appear to be a factor in the increased out put in the test room.

[^5]TABLE
EFFECT ON OUTPUTS OF CHANGING TYPES OF RELAYS

Oper. No. 1

Period	Date	Actual Time Usod to Compute lst Hour	Averago Output list Hour After Change Convorted Actual to I-901		Dato of lst Full Day's Output	Averago Hourly Output 1st Day After Converted to E-901
No. 8-15 Min.	1-25-28	7:35-8:40	49.9	54.9	1-26-28	62.2
A.M. Lunch, 10	2-8-28	9:13-10:20	57.7	63.5	2-9-28	66.9
Min. P.M. Rest,	2-16-28	12:48-1:35	63.9	70.4	2-17-28	68.5
4:30 Stop	2-22-28	1:30-2:28	61.3	67.5	2-23-28	64,0
No. 9-15Min.	3-31-28	7:30-8:25	54.6	60.1	3-31-28	65.5
A.M. Iunch, 10 Min. P.M. Rest, 4:00.S\$む0p						
No. $10-15 \mathrm{Min}$.	4-25-28	3:22-4:10	62.5	62.5	4-26-28	59.5
A.M. Lunch, 10	5-8-28	8:37-9:30	56.6	62,3	5-9-28	62.1
Min. P.M. Rest	5-10-28	10:35-11:25	60.0	60.0	5-11-28	61.8
"	5-18-28	2:23-3:30	52.7	58.0	5-19-28	63.8
"	5-26-28	11:13-11:45	63.8	63.8	5-28-28	62.3
"	6-8-28	8:54-10:00	58.8	64.6	6-9-28	63.5
		P--:09				
No. 12-No	10-12-28	11:09-12:55	57.7	63.5	10-13-28	64.5
Iunches, No		P-:09				
Rests	10-23-28	11:23-1:10	56.6	62.3	10-24-28	60.0
		Average		62.6		63.4

P-Personal time out deducted when figuring the output for the first hour.

Oper. No. 2

Period	Date	Actuel Time Used to Compute lst Hour	Average Out- put lst Hour After Change Converted Actual to E-901		Date of $18 t$ Full Day's Output	Average Hourly Output 1st Day After Converted to E-901
No. 8-15 Min.	1-25-28	7:35-8:15	55.6	61.2	1-26-28	63.2
A.M. Lunch, 10	2-8-28	9:05-10:00	60.0	66.1	2-9-28	67.9
Min. P.M. Rest,	2-16-28	1:01-1:45	68.2	75.1	2-17-28	70.8
4:30 Stop	2-22-28	1:44- 2:41	63.9	70.4	2-23-28	65.2
No. 9-15 Min.	3-31-28	8:11-9:00	61.3	67.5	4-2-28	64.9
A.M. Lunch, 10 Min. P.M. Rest, 4:00 Stop						
No. 10-15 Min.	4-25-28	3:19-4:00	73.2	73.2	4-26-28	60.1
A.M. Lunch, 10		P-:03				
Min. P.M. Rest	5-18-28	11:29-1:00	69.8	76.8	5-19-28	69.3
"	5-26-28	10:40-11:30	60.0	60.0	5-28-28	62.2
"	6-8-28	8:34-9:20	65.3	71.9	6-9-28	68.8
		P-:08				
NO. 12-NO	10-12-28	10:54-11:45	69.8	76.8	10-13-28	65.2
Iunches,		P-:09				
No Rests	10-23-28	11:35-1:25	53.6	59.0	10-24-28	62.7
	\therefore,	Average	63.7			65.5

P - Personal time out deducted when figuring the output for the first hour.

- Oper. No. 3					68.	
Period	Dete	Actual Time Used to Compute lst Hour	Average Output lst Hour After Change Converted		```Date of lst Full Day's Output```	Average Hourly Output lst Day After Converted to $\mathrm{E}-901$
No. 2 - Intro-	5-31-27	8:10-9:20	42.7	42.7	6-1-27	39.7
duction to test	6-2-27	4:42-5:00	26.7	29.4	6-3-27	51.5
room	6-7-27	9:00-10:00	50.0	55.1	6-8-27	50.3
No. 3-Speciel	6-17-27	9:50-10:55	46.3	51.0	6-20-27	50.5
Geng Retes	6-22-27	11:30-1:00	46.7	51.4	6-23-27	53.6
"	6-25-27	8:37-9:35	51.5	51.5	6-27-27	47.4
"	6-30-27	1:20-2:20	50.0	55.1	$7-1-27$	53.8
"		R-:02 P-:07				
"	7-8-27	11:13-1:15	44.2	45.5	7-9-27	54.4
"	7-11-27	8:17-9:10	56.6	56.6	$7-12-27$	51.7
"	7-20-27	11:41-1:25	50.9	50.9	$7-21-27$	55.0
"	7-23-27	8:26-9:30	46.7	59.1	7-25-27	54.6
"	7-27-27	4:25-5:00	36.2	45.8	$7-28-27$	53.0
"	8-1-27	8:25-9:25	50.0	55.1	$8-2-27$	54.6
No. 4-Two	8-8-27	8:25-9:00	51.5	51.5	8-9-27	54.5
5 Min . Rests	$8-11-27$	11:27-1:15	47.6	53.0	8-12-27	51.2
		P- :03				
No. 5 - Two	9-26-27	11:29-1:15	51.5	56.7	9-27-27	58.2
10 Min . Rests	9-29-27	1:41-2:50	51.0	56.2	9-30-27	58.4
NO. 6-Six	10-14-27	3:55-5:00	48.0	43.2	10-15-27	50.3
5 Min . Rests	10-18-27	9:11-10:10	55.6	61.2	10-19-27	60.5
"	10-29-27	9:15-10:20	50.0	55.1	10-31-27	52.5
-	11-2-27	8:32-9:30	56.8	62.5	11-3-27	63.6
No. 7-15 Min.	11-22-27	7:30-7:50	51.5	56.7	11-22-27	57.1
A.M. Lunck, 10	12-14-27	7:30-8:15	61.3	67.5	12-14-27	61.1
Min. P.M. Rest	1-11-28	8:25-9:20	54.6	60.1	1-12-28	63.4
"	1-13-28	8:00-8:50	60.0	66.1	1-14-28	63.7
No. 8-15 Min.	2-8-28	10:08-11:00	57.7	63.5	2-9-28	63.6
A.M. Lunch, 10	2-14-28	8:17-9:05	62.5	68.8	2-15-28	66.2
Min. P.M. Rest, 4:30 stop	2-21-28	1:47-2:50	56.8	62.5	2-22-28	63.2
$\begin{aligned} & \text { No. } 9-15 \text { Min. } \\ & \text { A.M. Iunch, } 10 \\ & \text { Min. P.M. Rest, } \\ & \text { 4:00 Stop } \end{aligned}$	3-30-28	2:18-3:13	66.7	66.7	3-13-28	62.8
No. $10-15 \mathrm{Min}$.	5-2-28	7:53-8:40	65.1	71.7	5-3-28	59.8
A.M. Iunch, 10	5-19-28	8:31-9:20	61.3	67.5	5-管-28	64.6
Min. P.M. Rest,	5-25-28	3:28-4:16	62.5	68.8	5-26-28	61.5
"	6-8-28	$\begin{array}{r} 8: 47-9: 50 \\ \text { F\&t. }-: 01 \end{array}$	62.5	68.8	6-9-28	62.3
NO. 12-NO Iunches, No Rests	10-20-28	7:54-8:45	60.0	66.1	10-22-28	53.8
		Average	57.2			56.5

P - Personel time out deducted when figuring the output for the first hour. R - Part of rest pause deducted when pause overlapped first hour. Fet. - Time deducted on eccount of fatigue resding during first hour,

3. The Effect: Of Periodic Illness

It was desirable to know whether periodic'illness would affect the output for particular weeks. It has generally been assumed that output is docreased during the menstrual period and in certain types of work this is known to be so. It seemed worth while to know the effect of periodic illness upon work of the relay-assembly type.

The dates of ceriain sick periods were recorded in the hospital records at the time regular examinations were made and dates for other periods were estimated from these. The data on file show the output of each pperator during the week in which periodic illness occurs and the average output of that weok compared wi.th the average output for the test period. These data indicate that there is no roduction in output during the week of periodic illness, for
(a) The averase output for the various operators during the weok in which the monthly period occurred show 21 instances in which the average was higher than that for the test period. and 13 instances in which it was lower.
(b) The average hourly output for all operators during the woeks in question was 6 of a relay greator than would have been the case if the average output for the entire test period har been maintainod.
(c) The roduction in daily output due to poricdic illnoss is not as great as that caused by the weok ond break in work since in 20 out of 29 instancos the average hourly output for Saturdey or Mondey of the wook in question was lower than that for any othor day during periodic illness.

The dotailed data are included in the table on the following pages.

Daje on Output During
Perjodic Illness

Oper. No. 1

Period of Test	Date of Sick Pericd.	Average Hourly Output	Average Hourly Output of Complete Test Period	Per cent + of "Sick Perīd" Compared to Complete Test Period
IVo. 8-15 Min.	Mon. 2-13-28	58.0		
A.M. Junch, 10	Tue. 14	60.0		
Min, P.M. Rest,	Wed. 25	64.9		
4:30 Stop	Thur.**16	69.1		
	Fri. 17	68.5		
	Sat. 18	62.3		
	Average	63.8	62.7	$+1.8$
No. $9-75 \mathrm{Min}$.	Mon. 3-12-28	63.5		
A. Mi. Luncia, 10	Tue. 13	64.4		
Min. P.M. Rest,	Wed. 14	67.8		
4:00 Stor	Thur.**15	66.9		
	Fri. 16	67.1		
	Sat. 17	63.0		
	Averase	65.4	65.5	- . 2
No. $10-15 \mathrm{~min}$.	Mon. 4-9-28	66.4		
A.N. Lunch, 10	Tue, 10	64.0		
Min. P.M. Rest	Wed. 11	67.3		
	Thur. *12	67.3		
	Fri. 13	68.4		
	Sat. 14	68.6		
	Averase	67.0	64.0	+4.7
	Mon. 5-14-28	61.1		
	Tue. 15	60.1		
	Wed. 16	60.2		
	Thur. *17	63.6		
	Fri. 18	64.0		
	Sat. 19	63.8		
	Average	62.1	64.0	-3
	Sat. 6-9-28	63.5		
	Sun. 10	Sunday		
	Mon. 17	63.4		
	Tue. *12	65.9		
	Wer. 13	64.9		
	Thur. 14	64.3		
	Fri. 15	6¢ 4.2		
	Sat. 16	65.0		
	Averase	$\boxed{64.5}$	64.0	$+.8$

* Periods taken from meãical reporis.
** Period dates established by estimetion.

Period of Test	Date of Sick Pariod	Average Hourly Output	Average Hourly Output of Complete Test Period	Per cent + or "Sick Perỉod" Compared to Complete Test Period
No. $11-15 \mathrm{Min}$.	Fri. 7-6-28	67.8		
A.M. Lunch, 10	Sat. 7	No Work		
Min. P.M. Rest,	Sun. 8	Sunday		
Saturday A.M.	Mon. 9	62.6		
- ff	Tue. **10	65.8		
	Wed. 11	66.0		
	Thur. 12	67.9		
	Fri. 13	66.7		
	Average	66.1	65.7	$+.6$
	Thur.8-30-28	68.5		
	Fri. 31	65.0		
	Sat. *9-1-28 Averaş	$\frac{\text { No Work }}{66.7}$	65.7	+ 2.5
No. 12-No	Sun. 9-2-28	Sunday		
Lunches, Jo	Mon. 3	Holiday		
Rests	Tue. 4	59.4		
	Average	$\overline{59.4}$	62.1\#	-4.3

* Feriods taken from medical reports.
** Period dates established by estimation
\# For the first nine woeks of this period.

Perjod of Test	Oper. No. 2.			
	Date of Sick Period	Averace Hourly Output	Average Hourly Output of Complete Test Period	Per Cent $+0 f$ "Si.ck PerTod" Compared to Complete Test Period
No. 8-15 Min. A.M. Lunch, 10 Min. P.M. Rest, 4:30 Stop	Mon. 1-23-28	Old. No. 2		
	Tue. 24	" "		
	Wed. 25	59.8		
	Thur.**26	63.2		
	Fri. 27	66.3		
	Sat. 28	65.0		
	Average	63.6	64.4	- 1.2
	Mon. 2-20-28	61.5		
	Tue. 21	65.8		.
	Wed. 22	64.9		
	Thur.**23	65.2		
	Fri. 24	66.7		
	Sat. 25	65.2		
	Averase	$\overline{64.9}$	64.4	+ . 8
No. 9-15 Min. A.M. Lunch, 10 Min. P.M. Rest, 4:00 Stop	Mon. 3-19-28	64.2		
	Tue. 20	69.6		
	Wed. 21	67.7		
	Thur.**22	68.6		
	Fri. 23	68.0		
	Sat. 24	67.2		
	Averase	67.6	68.0	-. 6
No. $10-15 \mathrm{Min}$. A.N. Lunch, 10 Min. P.M. Rest	Mon. 4-16-28	65.5		
	Tue. 17	68.8		
	Wed. 18	72.4		
	Thur.**19	71.7		
	Fri. 20	68.8		
	Sat. 21	68.2		
	Average	69.2	65.0	$+6.5$
	Mon. 5-14-28	61.1	.	
	Tue. 15	60.7		
	Wed. 16	64.1		
	Thur. *I7	65.6		
	Fri. 18	66.8		
	Sat. 19	69.2		
	Averare	64.6	65.0	-. 6
	Wed. 5-30-28	Holiday		
	Thur. 32	63.6		
	Frf.**6-2	69.9	.	
	Sat. 2	62.8		
	dvaraso	65.4	65.0	$+.6$

Period of Test	Date of Sick Period	Average Hourly Output	Averace Hourly Output of Complete Test Poriod	Per Cent + Of "Sick Perīod" Compared to complete Test Period
No. $10-15 \mathrm{Min}$.	Wed. 6-27-28	61.8		
A.M. Lunch, 10	Thur. 28	63.7		
Min. P.M. Rest	Fri. **29	67.7		
(Continued)	Sat. 30	68.5		
	Average	65.4	65.0	$+.6$
No. 11 - 15 Min . A.M. Iunch, 10 Min. P.M. Rest, Saíurday A.Mi. off	Wed. 7-25-28	69.4		
	Thur. 26	68.2		
	Fri. 27	66.4		
	Sat. *28	No Work		
	Sun. 29	Sunday		
	Mon. 30	Vacation		
	Avirase	68.0	66.6	$+2.1$
	Fri. 8-17-28	61.7		
	Sat. 18	No Work		
	Sun. 19	Sunday		
	Mon, 20	63.0		
	Tue, **21	72.0		
	Wed. 22	70.6		
	Thur. 23	71.9		
	Avoraje	67.8	66.6	+ 1.8
No. 12 - No Lunches, No Rests	Fri. 9-14-28	65.1		
	Sat. 15	61.4		
	Sun. 16	Sunday		
	Mon, 17	63.1		
	Tue. *18	65.1		
	Wed. 19	65.1		
	Thur. 20	61.4		
	Averase	63.5	63.5	0

* Periods taken from medical reports,
** Period dates established by estimation.

Period of Test	Oper. No. 3		Average Hourly Output of Complete Test Period	
	Date of Sick Period	Average Hourly Output		Fer cent \pm of "Sick Period" Compered to Complete Test Period
```No. 10-15 . Min. A.M. Lunch, }10\textrm{Min} P.M. Rest```	Mon. 4-23-28	59.5		
	Tue, 24	59.4		
	Wed. 25	58.8		
	Thur .**26	58.6		
	Fri. 27	60.0		
	Set. 28	57.2		
	Averege	58.9	62.1	$-5.2$
	Wed. 5-23-28	67.1		
	Thur. 24	64.7		
	Fri. 25	65.6		
	Sat. **26	61.5		
	Sun. $2^{7}$	Sunday		
	Mon. 28	59.4		
	Average	$\overline{63.7}$	62.1	+ 2.6
	Sat. 6-23-28	63.0		
	Sun. 24	Sundey		
	Mon. 25	62.3		
	Tue. *26	64.0		
	Wed. 27	58.3		
	Thur, 28	61.3		
	Average	61.8	62.1	- . 5
No. 11 - 15 Min. A.M. Innch, 10 Min. P.M. Rest. Seturdey A.M. off	Set. 7-21-28	Sst.off		
	Sun. 22	Sunday		
	Mon. 23	61.0		
	Tue. **24	65.9		
	Wed. 25	63.3		
	Thu. 26	63.3		
	Fri. 27	63.0		
	Average	63.3	64.0	-1.1
	Thu. 8-16-28	67.4		
	Fri. 17	67.5		
	Set. 18	S\&t.off		
	Sun. **19	Sundzy		.
	Mon. 20	61.7	,	
	Tue. 21	66.1		
	Wed. 22	65.2		
	Average	65.6	64.0	+2.5

*Periods teken from medical reports.
**Period late established by estinition.
76.

Period of Test	Date of Sick Period	Average Hourly Output	Average Hourly Output of Complete Test Period	Per cent + of "Sick Period" Compered to Complete Test Period
No. 12-No	The. 9-11-28	61.8		
Lunches,	Wed. 12	63.0		
No Rests	Thu. 13	61.5		
	Fri. *14	61.4	-	
	S\&t. 15	65.5		
	Sun. 16	Sundey		
	Non. 17	59.9		
	Average	62.2	60.0	$+3.7$

*Periods teken from medicel reports.

Periad of Test	- Oper. No. 4		Average Hourly Output of Complete Test Period	Fer cent $\pm$ of "Sick Period" Compared to Complete Test Period
	Dete of Sick Period	Average   Hourly   Output		
```No. 10-15 Min. A.M. Iunch, }10\textrm{Min} P.M. Rest```				
	Mon. 4-16-28	61.5		
	Tue. 17	58.8		
	Wed. 18	63.5		
	Thu. *19	60.6		
	Fri. 20	62.1		
	Set. 21	61.3		
	Average	61.3	62.8	- 2.5
	Mon, 5-14-28	63.9		
	The. 15	60.8		
	We区. 16	64.0		
	Thu. *17	61.5		
	Fri. 18	63.8		
	Sat. 19	63.5		
	Average.	62.9	62.8	+ . 2
	Mon. 6-11-28	62.8		
	Tue. 12	66.0		
	Wed. 13	63.5		
	Thu. *14	63.9		
	Fri. 15	65.9		
	Sat. 16	63.5		
	Averege	$\overline{64.3}$	62.8	$+2.4$
No. 11 - 15 Min, A.M. Lunch, 10 Min . P.M. Rest, Saturdey off	Mon. 7-9-28	63.2		
	Tue. 10	65.5		
	Wed. If	61.2		
	Thu. **12	62.4		
	Fri. 13	66.3		
		NO Work		
	Average	$\overline{63.7}$	63.0	. +1.1
-	$\begin{aligned} & \text { Mon. } 8-6-28 \\ & \text { Tue. } \quad 7 \end{aligned}$	Vacation		
	Wed. 8	"		
	Thu. *9	"		
	Fri. ${ }^{0}$	"		
	Sat. il	"		
No. 12 - No Lunches, No Rests	Mon. 9-3-28	Holiday		
	Tue. 4	61.3		
	Wed. 5	62.6		
	Thu. *6	59.7		
	Fri. 7	67.1		
	Sat. 8	63.3		
	Average	62.8	61.6	± 1.9
: *Period teken f **Period dete es	rom medieal re teblished by	eports.		

4. Hours of Sleep in Relation to Output

Is output related to the amount of sleep during the previous night?

In order to answer this question, output for individual operators was plotted against the number of hours of sleep each had the night before. No direct relationship was found. Likewise output was plotted against the number of hours of sleep each had the second night previous without finding any direct relationship. Both high and low outputs were observed following long hours of sleep and following short hours of sleep. Obviously, sleep is not a dominant factor in determining output.

Is sleep a minor factor or of any importance in determining output?

If so, the difference should appear upon averaging the output for a large number of days following short hours of sleep and comparing this figure with the average output for a large number of days following long hours of sleep. In order to secure comparative average data, the output for each operator was recorded by days from March 23,1928 , to November 8, 1929, arranging these output.figures in columns according to the length of the sleep time the night before. Each column represented a variation of one hour in sleep. For example, the first column used in the following table reports average output for those days in which the previous night's sleep varied between five hours and six hours. There were a few records in which the amount of sleep was less than five hours and a few records in which it was more than ten hours, but the number of days in these cases was so small that the averages had little significance. The following table and graphs show the effect of sleep upon output for the various operators and for the group as a whole.

It will be seen from the following table and graphs that:
(a) Individual operators vary in their ability to get on with little sleep. For example, operator No. 4 succeeds much better than operator No. I when her sleeping period
has been shortened. Operatar No. 5 is apparently more affected than any other one in the group by change in the sleep period. (It may be noted from the record that operator NO. 1 is a thin, slightly anemic girl. Operator No. 4 is stocky and robust. Operator No. 5 is somewhat older than the other girls and has frequently complained of headache in the past. It is also probable that in her case loss of sleep meant doing extra work in the evening rore frequently than with the other girls.
(b) The effect of loss of sleep, when the output for days following five to seven hours of sleep is compared with the output for days following eigit to ten hours of sleep, shows a statistically significant difference in the case of operators Nos. 1,2, add 5. There is an appreciable improvement in the output of operators Nos. 3 and 4 when sleep has been adequate although the difference is not so great as to make it absolutely certain that this difference is not acciaental.
(c) Combining the results for the group as a whole it may be concluded that sleep does have a definite affect upon output. It is a minor factor rather than the direct and preponderant factor. Consequently, some days following a short sleep period may show welatively high output, but on the average an operator or a group of operators produces less when sleep has been between five and seven hours than when it has been between eight and ten hours.

Computation	30	21	29	54	25	58	23	32	31	34
Operator	\#		\#2		\#3		\#4		\#5	
Hours of Sleep	$5-7$	$8-10$	$5-7$	8-10	5-7	8-10	5-7	$8-10$	$5-7$	8-10
Average Hourly Output	60.5	63.1	62.5	64.0	59.4	60.6	60.5	61.1	53.5	55.7
Average D^{2}	145.7	126.6	131.5	335.0	117.3	452.7	65.8	148.6	150.6	170.2
$\sqrt{D^{2}}$	12.05	11.26	11.45	18.30	10.81	21.27	8.11	12.20	12.27	13.04
P. E.	. 2714	. 3614	. 2667	. 2286	. 2992	. 2474	. 2361	. 2570	. 2670	. 2588
P. E. Diff.		. 452	.351		. 388		. 349		. 372	
Diff.	2.6		1.5		1.2		0.6		2.2	
D/P.E.Di.ff.	5.53		4.27		3.09		1.72		5.92	

Note:- See page 40 and following.

UNIVERSITY DF WISCONSIN - MILWAUKEE

816

B. FATIGUE IN RETATION TO INCREASED OUTFUT - EVIDENCES THEAT FATIGUE IS NOT THE PRTMASY FACTOR

During the two years of the test room study there has been a definite upward trend in output. The earnings of the test room operators are distinctly above those in the large gang from which they were taken." Some of the operators are turning out 35% to 50% more work than they were when they came into the test room.

What is the cause of this increased output?
It has generally been assumed that fatigue is a chief limiting cause of output. In fact limitation of output has cormonly been used as a definition of fatigue in industrial literature. But such a use of the term fatigue without qualification is confusing. It would make it necessary to include day-dreaming and preoccupation as phases of fatigue.

When the physiologist speaks of fatigue he means neuro-muscular fatigue, that is, the lowered ability to perform muscular work because of the work already done. This lowered working efficiency may be due to tired and over-loaded muscle "engines" or it may be due to fatigue of the nervous system which prevents the deliverance of necessary stimuli to the muscle with proper precision and force. In either case the physiologist assumes a standard mental condition and an optional use of the will. The individual tries his best to do something and is inhibited by a tired neuro-mascular system.

The psychologist on the other hand thiniss in terms of the mind. Is the will-to-do always the same? What part in production is played by concentration, preoccupation, or the will to drive one's self to greater efforts? Are there not elements of attitude, personality, will power, contentment and environment which affect output by means of their influence upon the mind of the worker, upon the consciousness or though control which decides what shall be asked of the neuro-muscular system?

These different approaches to the problem of industrial fatigue explain the confusion of terms in the literature and at the same time indicate the factors which must be considered in interpreting results like those in the test room. These studies upon rest pauses were started with the assumption that brief rests might be of benefit both to the operatar and to her output. In the experiment other new things than rest pauses were introduced unavoidably. The supervision, the conditions of work, the size of the gang in which the girls were paid, the operator's relationship
to others, her knowledge of her rate of production and perhaps even other factors were changed.

The first question to be answered in interpreting the data is this: Is the increased production due to a reduction of physiol-sical fatigue or to a changed mental attitude? Is it physiological or psychological? Is the nerve muscle mechanism or the will which drives it the primary apparatus with which the experiment deals?

It is necessary to distinguish clearly between the two contrasting causes of lessened output. On the one hand is fatigue which is defined by Webster as the "condition of cells or organs which have undergone excessive activity with resulting loss of power." On the other hand, is ennui, "a feeling of weariness and dissatisfaction; languor of spirits, arising from satiety or want of interest; tedium."

Obviously both of these conditions exist to some extent among factory operators. Both have an effect upon output. Changes have probably occurred in both under test room conditions. It is believed, however, that improvement in output in test room has been due primarily to a change in the second factor and only secondarily to a change in the first factor. In other words, reduction in neuro-muscular fatigue has not been the primary factor in increasing output.

It is inmediately apparent that ennui, which is the opposite of interest, eagerness and incentive, arises from varied causes. Further discussion of this subject will be postponed for the moment in order to present such evidence as has been accumulated showing that cumulative fatigue is not present and that the abatement of fatigue was not the factor primarily involved in increasing output of the test room operators.

1. Changes in Output by Periods

If the changed working conditions in the test room have affected output only through the reduction of muscular fatigue, one would expect to find a direct relationship between output and the various types of rest pauses according to the efficiency of these types of rest pauses in relieving fatigue. Instead one finds, from a study of the output data previously given, a gradual and continually increasing total output which overshadows the variation between various types of rest pauses although in ceneral the speed of production goes up as the working day is shortened.

The increasea production during the test has taken the operators from an average weekly output of about 2400 relays at the beginning to a present average weekly output of about 3000 relays. Periods Nos. 7, 10, and 13 had the same working conditions; namely, a fifteen minute rest and lunch in the morning and a ten minute rest in the afternoon. Yet the average weekly output for the group in period No. 7 was a little over 2500 relays, for period No. 10 it was a little over 2800 relays and for period No. 23 it is about 3000 relays. Furthermore, period No, 12 was like period No. 3 in working conditions requiring a full day's work without any lunch or rest. Yet the average output for period No. 3 was less than 2500 relays a week and that for period No. 12 was more than 2900 relays per week. Period No. 12 was continued for twelve weeks and there was no downward trend in the total output. Surely some other factor than relief from muscular fatigue must explain these findings.

The hourly output rate was distinctly higher during the full working day of period No. 12 than during the full working day of period Mo. 3. Between' the comparable periods Nos. 7 , 10, and 13 the rate of production also increased.

The gradually rising output indicates the absence of cumulative fatigue. Moreover we find the hourly production rate related to the type of working day more directly than to the length of the working week.

Now poriod No. 10 retained the lunch and rest, but came back from the four o'clock stop to the five o'clock stop. Hourly output went down somewhat, but total output went up because of the increased working time. Then followed the same type of working day for period No. 1l, but with Saturday mornings off, allowing a five day week. The hourly output remained about the same and the decrease in total output was proportional to the shortening of the week. If there had been an appreciable cumulative fatigue it would be expected that the increased period of rest during the week end would have increased the hourly production rate.

The output of the present operators Nos. 1 and 2, who entered the test room at the beginning of the eighth period, as compared mith that of operators Nos. 3, 4, and 5, also suggests that one is dealing in th samething beside muscular fatigue. Operators Nos. 1 and 2 wanted to come into the test room; they knev that two girls had been released and they undoubtedly tried to make a high output record when they first entered the room. No pressure mas placed upon them to secure a high output, and they were told that they vere to work at their natural speed. At the time the new operators Nos. 1 and 2 joined the group operators Nos. 3, 4, and 5 had increased their efficiency about 20% since the beginning of the
experiment. These new operators produced a higher output than the others from the beginning. They are naturally faster operators. The fluctuation in efficiency for all the operators since that time has been approximately the same. What the output rate for operators Nos. 1 and 2 was in the original department is not known, but it seems likely that they were able to speed up immediately upon coming into the test room, thereby meeting and surpassing the output of operators Nos. 3, 4, and 5 which was then distinctly above that in the gang outside. Certainly their production in the original department was relatively higher in relation to their ability than that of the other three operators. They are now working at 12% to 15% above their initial efficiency in the test room while operators Nos. 3, 4, and 5 are working at 35% to 50% above their base period efficiency. One cannot draw definite conclusions from this experience, but it would seem that, if muscular fatigue were the governing factor, operators Nos. 1 and 2 would have had a lower output rate until they began to secure the benefits of the rest periods or if they had jumped up their production by overwork they would hardly have been able to maintain it.
2. Vascular Skin Reaction Readings as an Index of Fatigue

Procedure:
During the test means have been sought for measuring fatigue. The literature on the physiology of fatigue contains many references to the vascular skin reaction as a fatigue index. It was first discovered by Marey that a white line on the wrist, produced by a pressure which presses together the walls of the blood vessels, disappears more quickly under conditions of fatigue than under conditions of rest. This principle was further studies by Ryan who devised an instrument to be drawn across the wrist in making the white line. Ryan relied upon the extension of a coil spring over a given distance and the skill of the operator in moving the instrument at a uniform rate to give the same pressure conditions on the forearm. In spite of many references confirming Marey's discovery, no data has been found which gives the actual individual readings.

The freedom of this test from influence by the voluntary control of the operator and the simplicity of the procedure made it seem worth while to attempt experimentation to see whether it could be used as a measure of fatigue in factory operations of the type we being studied.

Professor Turner devised a new instrument for producing uniform pressure on the arm. This consists of a rod hinged at one end and with a weight at the other. This rod, the lower edge of which is formed into a round surface of desirable width and curvature, is dropped from a given distance each time the test is made. As the rod is briskly lifted from the wrist a stop watch is started and the time the white line remains discernible on the wrist is recorded to the nearest tenth of a second.

The disappearance of this white line is not easy to read and by studying different types of lighting it wes found that it could be read more easily when a purple light was cast upon the arm. The type of light was secured by means of a Cooper Hewitt light with a standard C blue filter such as is used for photographic purposes. This modification of lighting makes it easier to determine the end point which is the complete disappearance of the white line and thereby gives a somewhat longer reading.

In spite of these two improvements in the method of making vascular skin feaction readings the individual successive readings varied widely. These readings commonly varied by 25% and occasienally the lowest reading would not be more than 50\% of the highest reading. These variations are apparently due to the subjective difficulties of determining when the end point is reached and of operating the stop watch.

One set of five readings was made thirty minutes after starting work in the morming. Thirty minutes before closing time at night a similar set of readings was made. Following this the operative fatigued the muscles of the hand and lower arm by a series of movements which grip the fingers of the hand tightly and then straighten them back completely. Following this local fatigue a second series of five readings was made.

Computations and Results:
Averages of all morning readings and of both sets of aftermoon readings were made for each operator and for the group, over a seven week period. The probsble errors of these averages were computed and also the relationship between the differences of the averages and the probable error of these differences. As the tables show, the grand average of the morning reading was 1.71 seconds. That of the afternoon reading was 1.35 seconds and that of the fatigue reading 1. 00 seconds. The examination of probable errors shows that these differences are statistically significant. The results confirm the statements previously made that there is a
difference in the speed with which the walls of the minute blood vessels return to their normel shape following pressure, according to the fatigue condition of the worker.

The above results are general and this test cannot be of great use to industry unless it is sufficiently exact to record slight differences in fatigue. The attempts to discover any consistent relationship between these readings and daily variations in output have been entirely unsuccessful. Furthermore, the variations in any particular set of readings makes it clear that minor variations in the extent of fatigue cannot be thus determinud.

Conclusions:
(a) The vascul.r skin reaction does not measure minor differences in the iatigue level. It does show that some fatigue is developed during the day.
(b) The development of a new and better instrument and the discovery of tho value of special lighting (monochromatic rather than diffuse) are definite irmprovements in the technique but do not make consistent readings possible.
(c) The present variation in individual readings is probably due to the subjective element, that is, the difficulty of the obseater in determining the end point and. accurately recording it by the manipulation of a stop watch.
(d) Until this variation can be eliminated and greater precision obtained the test will not be of value in determining such minor differences of fatigue as are likely to result from slight differences in hours of work.
(e) The use of the motion picture camera or the photoelectric cell may standardize this procedure and increase the reliability and consistency of the readings. The development of these refinements of method is not in the main line of experimentation of this study; and further rescarch in this subject is discontinued at Haw thorne and is being carried on by Professor Turner at the Department of Biology and Public Heal th of the Massachusetts Institute of Technology.
(f) Local fatigue of hand and wrist musclos following a bricf poriod of vigorous work reduce the vascular skin reaction reading as much as it is reduced by the work of the day.

$\begin{aligned} & \text { Date } \\ & \text { of } \\ & \text { Week } \\ & \hline \end{aligned}$	Average A.M. Reading	Average P.M. Reading	Average Fatigue Reading	$\begin{gathered} \text { Av. Diffis } \\ \text { Between } \\ \text { A.M. \& P. M. } \end{gathered}$	$\begin{gathered} \text { P.E. } \\ \text { of } \\ \text { Difference } \\ \hline \end{gathered}$	$\frac{\text { Diff. }}{\text { P.E.Diff. }}$
Operator No. 5						
7-2	1.72	1.2̇2	1.03	. 50	. 0603	8.30
7-9	1.56	1.45	1.09	. 11	. 0696	1.58
7-16	1.44	1.25	--	. 19	. 0421	4.51
7-23	1.59	1.27	--	. 32	. 0408	7.84
8-13	2.20	1.57	--	.68	. 0575	10.95
8-20	2.07	1.64	--	. 43	. 0576	7.46
8-27	2.08	1.60	--	. 48	. 0725	8.62
Average	1.81	1.43	1.06	. 38	. 0275	13.8
Layout Operator No. 6						
7-2	1.70	1.48	1.27	. 22	. 0603	7.3 .64
ค-9	1.80	1.52	1.21	. 28	. 0769	3.64
7-16	1.86	1.36	--	. 50	. 0409	12.20
7-23	1.80	1.32	--	. 48	. 0496	9.68
8-1.3	1.97	1.68	--	. 29	. 0426	6.80
8-20	2.17	1.64	--	. 53	. 0634	8.37
8-27	1.90	1.68	--	. 22	. 0460	4.78
Average	1.89	1.53	1.24	. 46	. 0229	20.1

RECAPITULATION OF AVERAGES

Oper. No.	Name	Average A.M. Reading	Average P.M. Reading	Average Fatigue Reading	Av. Diff. Between A.M. \& P.M.	$\begin{gathered} \text { P.E. } \\ \text { of } \\ \text { Difference } \\ \hline \end{gathered}$	$\frac{\text { Diff. }}{\text { P. T. Diff. }}$
1		' 1.68 sec .	1.33 sec.	. 96 sec.	.35 sec .	. 0211	16.6
2		1 2.79	1.36	1.14	. 43	. 0213	20.2
3		91.62	1.31	. 91	.31	. 0217	14.3
4		1.66	1.34	. 94	. 32	. 0243	13.2
5		1.81	1.43	1.06	.38	.0275	13.8
Asl f		1.71	1.35	1.00	.36	. 0104	34.6

3. Output by Days of the Week

The output studies by days of the week indicate that cumulative muscular fatigue is not present. The output is characteristically low on Mondays and Saturdays and is maintained at a high level during the other four days of the week. The low Monday output is not due to a warming-up period following Sunday rest because several individual operators show occasional Mondays upon which the output is the highest for the week. It is not likely that the low output on Saturday is due to comulative fatigue since during wat December the Saturday output came up to a level of that for the other days while the Monday output did not correspondingly increase.
4. Health of Operators

The physical examinations indicate the complete maintenance of health of assembly operators. The girls say that thyy feel better and enjoy their work more than at any time since they have been employed. These girls were all experienced operators prior to the test and yet their output for period No. 12 is 35% greater than that for the similar period No. 3. In period No. 12 there were no rest pauses to provide relaxation and the maintenance of improved output with the maintenance of heal th would indicate that there are some factors other than muscular fatigue responsible for the improvement an production, and that the individual is not working at a pace which she could not maintain continuously.
5. Peritotiliso cial nocise? $\mathrm{tr} t$?

A It ckemisulikelyu that, ini this type of mankumere accomb panied by serious muscular or nervous fatigue, there would be a reduction in output during periods of monthly illness.
6. Sleep and Output

The amount of fatigue produced in connection with extensive reductions in the amount of sleep has a minor effect upon output for the following day.

7. Blood Pressure Findings

The blood pressure readings for operators in this group indicate that the girlst are working well within their capacity throughout the day. It will be recalled that fatigue as indicated by cardio-vascular indices is less in this group than in the other groups of workers tested by Dr. Mayo:

c. FACTORS OTHER THAN FATIGUE

Now that there is reason to believe that changed attitude or relief from ennui rather than from muscular fatigue has primarily effected the change in rate of production in this type of process, the problem is to analyze further the factors involved. Were the operators not trying to make the highest possible production while in the regular department? Have the conditions of the test merely taken away the opportunity for individual output control? How large a factor was payment on the small gang basis? Has there been developed here a process of training which led to new "habits of work"? Is prooccupation an inportant factor in limiting output? What is the relative importance of improved conditions and which improvements are of groatest value?

There are several factors which affect the ability of the in. dividual to give continuous and satisfactory application to the work in hand. These factors must be considered in analyzing the results.

To enumerate:

1. Contentment

Greater contentment has been reflected in the desire of the operators to remain in the test room rather than to go back to the large gang outside. It has been further reflected in the tremendous drop in absenteeism. There is no doubt from their statements that there was some discontent prior to coming into the test room group and the apparent success of the interviewing plan* which has arisen out of this study further bears out the inportant relationship betweon satisfactory supervision and morale. It is belicved that this factor is important but as yet it cannot be given an exact relative value.

2. Ghanged Habits of Work

The operators were afraid to increase the longth of the rest pausea beyond five minutes because they thought, they would lose money since they rould probably bo unable to make up for the time lost. That fecling on their part is belicved to have been sincere. There has been a great increase in the speed of production and in total output which means sustained production at a higher speed. To what extent can this have been due to a training process like that mich the athletes go through? These operators have frequently been urged not to "speed" but they have, at the same time, been able to see their production day by day and there is always a stimulus for one to improve his former record.

* See Section V, Part A, Item 2.

3. Preoccupation and Concentration
e
These factors are directly related to contentment, they are also related to home conditions and outside activities. There is some relationship between heal th and these mental conditions. Improved concentration may be also the result of mental training. These things are separate from the mere skill which arises from training, however. These factors may directly affect output. At the same tine they are affected by other conditions.
4. Earnings

To what extent was the opportunity for each girl to have more nearly that she earned, because of working in a small gang, a factor in increasing her output?
5. Working Conditions

The aim tias to make little change in working conditions in addition to those the effects of which it was desired to study. Nevertheless, the girls were in a room by themselves. They were free to converse with each other within limits and there was beside each desk a slot through which each completed relay slipped with a clipping sound. Some of these conditions may have had an effect upon output.
6. Pacing each other

It has been noted that operators Nos. 1 and 2 tend to work in unison and that operators Nos. 3 and 4 do the same thing to some extent. It may be that close association, conversation, and the opportunity to observe the output of the adjacent operator more easily (because of the recording device) has had the effect of keeping operators in step at a quickened pace.

Efforts are being made to determine the relative importance of some of these factors by specially designed experiments, the inception of which is reported in the following section. It is unlikely that any one factor rill be found which is primarily responsible for the result obtained, but if the studies are to be of greatest use industrially they should determine as well as possible the relative values of these different possible causes.
A. SECOND RELAY ASSEMBLY GROUP

On August 27, 1928, a special test was started to determine the importance of being paid in a small gang as a factor in increasing output. The desire was to simulate the change made in the test room in only one respect; namely, that of the method of payment. Five operators in the relay assembly department were selected and their outputs determined in terms of the number of piece parts assembled. For a period of five weeks a record was kept of their outputs without their knowing it. These outputs were averaged for use as a 100% or base period figure. (Data for operators Nos. 1 and 2 were not secured for the full five week period.)

At the end of this base period the girls were told that they were to be formed into a special small gang of five and that this small gang would be paid separately. These operators were leit at their same benches with the same supervision and the same working conditions. The significant difference botween the base period and the special gens period was the difference in the method of payment. Perhaps it should be kept in mind also that these operators knew that their individual outputs were being carefully measured under the special gang arrangement.

This socond period of work (special gang period) was continued for nine weeks. At the end of that time considerations outside the experimental program made it desirable to return these girls to their regular groups. Their output record.s were kept for a time after they went back to the regular gang and these records constitute the third or another regular gang period of the experiment.

There was, then, a base period for these girls under regular working conditions, a special gang period in which the gang of five was paid separaṫly, and a third or regular gang period. after they had returned to the original working conditions. On the following pages are prosented. (I) tho basic output data, (2) tablo No. l giving the weekly average hourly output and the percentage of efficiency, and (3) table No. 3 giving the total weokly output by the periods of the test. By the and of the seventh week after the girls had been returnod to the regular gang all of the opэrat்ors except one had been transferred to other classes of work. The keoping of rocords was, therefore, discontinued and this speciel tost brought to an end.

The first woek aftor placing the five operators on a special gang basis so far as pay was concernod, the average output for the group increased 13.8%. This average output remained from 10% to 15% above that of the base period. throughout the nine weoks of the spocial gang period. Upon tho raturn to the rogular gang the averago output for the group dropped to 94.8% of the output for the base period. The output did not come back to that of the base poriod and for one wook, tho fifith, it was only 89.6% of the output for the base period.

The output for individual operators varied widely. It will be noticed that oporator No. 3 increased her output 25% during the first week of the special gang period. The other four operators improved from 8% to 15% in output during this first weok. Conversely upon return to the regular gang period operator No. 3 showed an output during the first week which was only 60.6% of her base period production, a little more than half what i.t was for the weok before. It was the reduction in output of this operator which accounted chiefly for the drop in the week's average since operator No. 1 produced 90% of her base period output and operators Nos. 2 and 4 were 16.5% and 14.6% above the base period respectively. Operator No. 5 was absent.

The increase in output of this group was more prompt and more extensive than that for the test room group when they went on a special gang rave. It may be, of course, thet the knowledge that their individual output would be more carefully scrutinized and the suspicion that some experiment was under way stimulated this incroased output. Nevertheless, it seems fair to conclude that the basis of pay has boon an important item in increasing output in the test room. It seems liksly from this experience that an increased output is to be expocted when a large gang is broken up into small groups for purposes of payment.

The following tables via; basic data, table No. 1 and table No. 3 are of this second assembly group.

These data are shown in numbers of piece parts which go to make up the relays and not by numbers of relays.

BASIC DATA TABLE FOR SECOND RELAY ASSEMBLY GROUP* Daily Output in Terms of Piece Parts

*Refer to explanation at beginning of Basic Data Table for First Relay Assembly Group, page No. 6.

	Hrs. \& Min.	Operators						Av.for
Date	Worked		$\overline{1}$	$2 \longrightarrow$	3	4	5	Group
12-3	8:20		14,715	14,083	18,326	15,179	15,649	15,590
12-4	8:20		15,502	15,149.	18,624	15,800	16,146	16,244
12-5	8:20		13,341	13,283	18,141	15,125	15,008	14,980
12-6	8:20		14,351	13,110	16,060	15,784	15,551	14,971
12-7	8:20		14,133	14,301	17,184	15,073	15,803	15,299
12-8	4:0u	("14,402")"6,916"(13,632)	6,546 $(16,860)$	8,096 (14,797)	7,105 (14,590)	7,006 (14,856)	7,134
TOTAL	45:40		78,958	76,472	96,431	84,066	$\overline{85,163}$	84,218
12-10	8:20		13,696	15,310	17,201	15,294	15,791	15,458
12-11	8:20		14;810	14,097	19,365	15,261	16,009	15,908
12-12	8:20		15,151	14,035	17,654	15,076	16,005	15,584
12-13	8:20		15,255	15,419	17,598	15,061	16,051	15,877
12-14	8:20		14,020	14,427	18,705	15,013	16,031	15,639
12-15	4:00	(13,940)	6,694 (14,290)	6,862 (16,752)	8,044 (15,217)	7,307 (15,571)	7,585 (15,154)	7,298
TOTAL	45:40		$\overline{79,626}$	80,150	$\overline{98,567}$	$\overline{83,012}$	$\overline{87,472}$	85,764
12-17	*8:20		13,900	13,682	16,986	15,281	" 15,862 "	15,142
12-18	$8: 20$		14,907	14,475	16,967	15,542	15,366	15,451
12-19	8:20		15,000	15,014	17,016	16,020	16,151	15,840
12-20	6:20		14,072	13,542	17,494	15,637	15,503	15,250
12-21	8:20		13,894	13,563	19,276	14,772	16,321	15,565
12-22	4:00	(14.159)	6,799 (12,527)	6,015 (17,008)	8,167 $(14,934)$	7,171 (16,121)	7,741 (14,950)	7,179
Tomal	45:40		78,572	76,291	95,906	$\overline{84,423}$	$\overline{86,944}$	$\overline{84,427}$
12-24	8:20		13,363	14,532	15,281	15,166	14,391	14,547
12-25	8:20		"13,735"	"14,244"	"16,249"	"15,234"	"15,304"	"14,953"
12-26	8:20		13,735	14,069	15,864	15,019	15,009	14,739
12-27	8:20		12,902	13,158	16,209	15,318	15,711	14,660
12-28	8:20		14,958	15,235	17,663	15,450	16,122	15,886
12-29	4:00	$(13,735)$	"6,596" $(14,244)$	"6,840" 16,249$)$	"7,803"(15,234)	"7,315"(15,304)	"7,349"(14,953)	"7,181"
TOTAI,	45:40		75,289	78,078	89,069	83,502	$\overline{83,886}$	81,966

END OF TEST

Average Fourly Output and PeCOND REABLE NO. 1

The base period group average is equal to the average of the individual averages and not an average of totals, as base poriods of individual operators were of different lengths.

			$\frac{\text { Opr. No. } 1}{\text { Aver. }}$	Opr: No. 2	Opr. No. 3	Opr. NO. 4	Opr. No. 5	Group
	No. of Wk. in	Hrs. of Work	Aver. Hourly \% of					
Poriod	Period	Per Wk.	Output Eff.					
No. 1	1	45.67			1638.4 94.0	1595.6100 .0	1722.9 98.7	
Base Period	2				1728.1 99,1	$1576.0 \quad 99.6$	1731.099 .1	
in Regular	3				1791.0102 .7	1582.8100 .0	1723.5 98.7	
Gang	4		1638.2101 .7		1814.9104 .1	1595.8100 .8	1757.5100 .7	
	5		1584.598 .3	1484.3100	1748,6 100.3	1564.5 98,8	1794.5 102.8	
	AVER.		1611.4100	1484.3100	1743.6100	1583.1100	1745.6100	$\overline{1633.6} \overline{100}$
No. 2	1	45.67	1752,9108.8	1713.1 115.4	2180.1125 .0	1763.0111 .4	1884.7 108,0	1858.7113.8
Special	2		1728.9107 .3	1674.4 112.8	2111.5121 .1	1840.7116 .3	1864.7106 .8	1844.1112 .9
Gang Rates	3		1743.5108 .2	1755.0 118.2	2158.2 123.8	1817.6114 .8	1915.3109 .7	1877.9115 .0
	4		1720.4106 .8	1670.5112 .5	2100.0120 .4	1848.5116 .8	1903.7109 .1	1848,6 113.2
	5		1648.5102 .3	1709.6115 .2	1950.3111 .9	1828.4 1115.5	1836.8105 .2	1794.7109 .9
	6		1715.3106 .4	1696.9114 .3	1977.2 113.4	1825.2 115.3	1921.5110 .1	1827.2111 .9
	7		1734.1107 .6	1708.9 115.1	2089.5119 .8	1790.3113 .1	1858.7106 .5	1836.2112 .4
	8		1693.1105 .1	1670,8 112.6	1978.5113 .5	1828.4 115.5	1889.0108 .2	1812.0110 .9
	9		1730.0107 .4	1738.1117 .1	1932.0 110.8	1744.0 110.2	Abs:	1785.8109 .3
	$\overline{\text { AVEFi. }}$		$\overline{1718.5} 106.7$	1704.1114 .8	$2053.0 \frac{117.7}{117}$	1809.6114 .3	1884.3 107.9	1831.7 112.1

1

Period
No. 3
Return to Regular Gang

No. of	Hrs. of
Wk. in	Work
Period	Per Wk.
1	45.67
2	
3	
4	
5	
6	
7	

Opr. No. 1	Opr. No. 2	Opr. No.	Op	Opr. N	Group	
Aver*	Aver.	Aver.	Aver.	Aver.	Aver.	
Hourly \% of	Hourly	\% of				
Output Eff.	Output	Eff.				
$1594.9 \quad 99.0$	1729.7116 .5	1057.060 .6	1814.6114 .6	Libs.	1549.1	94.8
1650.3102 .4	1790.1120 .6	1067.561 .2	1843.3116 .4	tibs.	1587.8	97.2
1637.4101 .6	1701.5114 .6	1147.965 .8	1804.9114 .0	Abs.	1575.1	96.4
1522.194 .5	1565.9105 .5	1124.064 .5	1774.3112 .1	Transferred	1496.6	91.6
1546.4 96.0	1509.8101 .7	1132.2 64.9	1662.3105 .0		1463.2	89.6
1508.393 .6	1528,0 102.9	Trenisferred	1760.0111 .2		1575.4	96.
Inansferred	Tramaferred	"	1782.611			

END OF TEST

TABLE NO. 3
SECOND REIAY ISSEMBLY GROUP
Total Weakly Output and Average Feokly Output by Periods of Test
Tho base period group average is equel to the average of the individual averages and not an average of totals, as base periods of individual operators were of different lengths.

Period	Week	Hrs. of Work Per Wk.	Oper. No. 1 Total Weekly Output	Oper. No. 2 Total Weekly Output	oper. No. 3 Total Feekly Output	Oper. No. 4 Total Weekly Output	Oper. No. 5 Total Weekly Output	Group Total Weekly Output
No. 1	1	45.67			74,835	72,872	78,584	
Basc Poriod in	2				78,951	71,975	79,056	
Regular Gang	3				81,794	72,285	78,715	
	4		74,811		82,685	72,881	80,267	
	5		72,356	67,788	78,858	71,450	81,956	
	TOTAI		147,167	67,788	398,1.23	361,463	398,578	
	Average		73,584	67,788	79,625	72,293	79,713	74,601
No. 2	1	45.67	80,047	.78,237	99,563	80,517	86,075	84,888
Special Gang	2		78,958	76,472	96,431	84,066	85,163	84,218
Rate	3		79,626	80,150	98,567	83,012	87,472	85,764
	4		78,572	76,291	95,906	84,423	86,944	84,427
	5		75,289	78,078	89,069	83,502	83,886	81,966
	6		78,334	77,499	90,297	83,357	87,753	83,449
	7		79,196	78,047	95,427	81,761	84,866	83,860
	8		77,324	76,305	90,359	83,505	86,270	82,752
	9		79,010	79,381	88,236	79,648	Abs.	81,556
No. 3	1	45.67	72,841	78,995	48,274	82,872	Abs.	70,747
Return to	2		75,369	81,756	48,754	84,185	Abs.	72,517
Rogular Gang	3		74,781	77,706	52,424	82,431	Abs.	71,933
	4		69,515	71,513	51,331	81,032	Tranşierred.	68,349
	5 6		70,625	68,951 69,786	51, 707 Transierred	75,916 80,381	"	66,826 71,947
	7		Trambiemsed	Transturred	it.	81,411	"	

As a further check upon the results of the test room studies, a group of operators was sought whose working conditions might be changed without changing the basis of pay. It was decided to set up a test room with a group of five mica splitters, making the test room conditions like those which have previously been maintained for the relay assembly test.

The work of a mica splitter is to separate thick sheets of mica into thin sheets of standard thickness (a few thousandths of an inch) with a pointed instrument. Each thin sheet is than tested in automatic calipers to determine whether it is within the limits of thickness allowed. Rough edges of mica are trimmed with shears when necessary. This work requires precise movements and close attention. The foreman of a mica splitting group stated that the expertness and output of an operator increases appreciably over the first two or three years of work on this job.

1. Precedure

The output of five experienced operators was determined over a period of eight weeks beginning August 27, 1928. During this time the girls were working in the regular department and did not know that output records were being taken or that any special attention was being paid to their production. All workers in this group are paid on a straight piece work basis.

The output of these operators during the eight weeks was taken as a base rate.

On October 22, 1928, the five operators were moved to a small test room, well lighted by large windows at the left of the operators, and partly partitioned off from one of regular departments. The plan of the test study was to try the effect of rest pauses. This was explained to these operators. They were willing to enter upon the study and were interested in it. The quality of mica and the ease with which it can be split inevitably fluctuates somewhat, but general working equipment so far as desks, chairs, instruments, and lighting are concerned were of the same type in the west room as they were in the regular department.

For five weeks (in the test room) the operators were kept upon a full working day exactiy like that upon whicn tiney had been working in the regular department. Two ten minute rest pauses were then provided, one at 9:30 A.M. and the other at 2:30 P.M. These working conditions have been continued to the present time. The reason for making this a long period lay in the fact that the output of the relay assembly test room operators has shown a continual upward trend which was independent
of the number and length of rest pauses. The longer contimuation of this feature should help to determine the maximum effect of each change in working conditions.

2. The Individual Operators

For each operator certain facts were determined and certain information was collected which may have a bearins on her output. General information of this type is included in the following statements:

Operator No. 1:
The firl is a severe mental, or problem case. She has had-several "nervous breakdowns" and does not seem to have many friends. She is a widow, has a son and daughter, both of whom will graduate from grammar school in June, 1929. She is dissatisfied with her present home, which she rents, and wants to secure a place with more ground so that she may have a "garden and flowers." She is extremely concerned regarding the outlook for the future of her children and attends lectures on Child Welfare and related subjects. She does a great deal of reading; is over cautious about her diet. She lost her home - or that part which was paid in - through some questionable real estate deal. Her mental condition, as expressed by her remarks, has improved considerably since coming on the test and she is "happier" and is gaining weight. She is forty years of age. She has been with the Company approximately nine years. She has been splitting mica for five years.

Operator No. 2:
Has a pleasant attitude toward life. She is a widow and has one daughter who is also employed by the Compeny. She maintains the home. She has worked here twelve years, and is forty-one years of age. She has been splitting mica for two and one-helf years.

Operator No. 3:
Is single. She has no responsibilities and has savings deductions made from her weekly pay amounting to \$15.50. She is employed during lunch and dinner hour as a cashier in the Company Restaurant. She lives in a furnished room. She has been with the Company nine years, and is twentyeight years of age. She has been splitting mica for four years.

Operator IFO. 4:
Is a divorcee. She has one child, but is apparently without a serious sense of obligation. She had a son who died. She worked for the Company previous to marriage. She has been working for the Company a total of seventeen years and is thirty-seven years of age. She has been splitting mica for ten years.

Operator No. 5:
Is restrained by severe parental discipline, especially from her mother. Her mother acquires her entire pay, and allows her a meager amount for spending. She is moody and emotional. She has \$2 taken out of her pay each week as a savings in the Ready Money Plan. She would like to increase this to ${ }_{\$}^{4} 5$ a week "if mother wouldn't find out," but is "afraid mother will find out." She is subscribing to five shares of A.T. \& T. stock which her father, who is more sympathetic than her mother, assures her will be hers when they are paid up.

The mother wants to return to Austria where this operator was born, and wants to take the father and younger brother, leaving the operator here to work and send the mother her money. The mother removed her from school when in the seventh grade. The operator has a sister in the second year of high school, who the mother says will have to discontinue, as she is "too big to go to school." The operator was laid off during the slack period after working six months. She has a total length of service of one year and six months, and is eighteen years of age. She has been splitting mica for one year and four months.

All of these data (including base period and test room periods) have been collected under overtime conditions. on four days a week these ofirls have been working 9-3/4 hours since August, 1928. They usually worked Saturday afternoon and they have sometimes worked on Sunday.

The output data for this group follows in the form of (1) a basic data table, (2) table NO. I siving hourly output and percentage of efficiency, and (3) table No. 3 giving weekly output for each operator and for the group as a whole.

Although this test has not progressed very far, certain significant facts may be noted. The output in the test room first fell below that during the base period in the regular department. Factors which may have been responsible for this are the new and unaccustomed conditions of a strange room in which to work and the fact that, due to difficulties in heating, the temperature was lower in this room during part of this period than in the regular shop department. A similar decline in output was experienced with the relay assembly test group when they were moved to the test room.

It will be seen from the tables and from the graphs of total weekly output and percentage of efficiency that the output during the first few weeks of the ten minute rest pause was lower than that for the base period. The efficiency of the operators gradually increased, however, until it more than compensated for the time taken out in rest pauses. There has been a gradual and reasonably continuous increase in efficiency and output. Since the sixth week of this period they both have been above corresponding figures for the base period. The hourly output has increased about 10%. It would be necessary for it to increase only 4% to offset the time lost in rest periods. The total output has been increased about 6%.

A study of the output and efficiency records of individual operators in the following graphs shows a high fluctuation from woek to week on the part of operators Nos. 1 and 5 with a definite improvement in consistency for operator No. 1 during the more recent weeks. A study of the data given above for these operators (reflecting their mental and home conditions) suggests a raason for this wide fluctuation.
4. Conclusions

Two facts of interest have apeeared in connection with this study to date.
(a) Five experienced mica splitters who have always been paid on a straight individual piece work basis have increased their rate of output about 10% and their total output about 6% under test room conditions with two ten minute rest periods in the working day.
(b) Two operators with unsatisfactory home conditions and unstable emotional status show excessive variation in their output from day to day and from week to week.

BASIC DARA TABLE FOR MICA GROUP*
DAILY OUTPUT IN PGRMS OF NUMBER OF PIECSS OF MICA SPTIT OFF

* Refer to explanation at besinnine of Basic Data Table for First Relay Assemblers Group, pace 6.
** All output figures have been reduced to equivalent figures corresponding to no overtime.

*336.00 Hours for Operators No. 2 and. 4.

* Repair Days. On account of the infrequency of repairs the total daily output for thise days has been given a proporitionate increase and. added directly into the total for the week, instead of carrying both actual and adjusted ficures in the table.

(PERIOD NO. 3 - WWO 10 MINUTI R3STS							
11-26-28	8:25	1593	1385	1713	1710	1319	1544
11-27	8:25	"1618"	1410	$17 \triangle 4$	1720	1242	1547
11-28	8:25	1676	1.462	1758	1649	1296	1568
11-29	8:25	"1618"	"1406"	"1718"	"1699"	"1300"	"1548"
11-30	8:25	1.635	1405	1694	1682	1295	1542
12-1	4:05	(1546) $750(1364)$) 6621	8151	8421	1) 6601	74.5
Total	46:10	$\overline{8890}$	7728	$\overline{9440}$	9302	$\overline{7112}$	$\overline{8494}$

	Hr. \& Min. Worked	Operators.				Av. for Group	
Date		I	2	-	4		
12-3-28	8:25	1700	1374	1740	1692	1631	1627
12-4	8:25	1687	1468	1730	1702	1702	1662
12-5	8:25	1649	$1<64$	1758	1682	1711	1653
12-6	8:25	1642	1255	1702	1683	1537	1564
12-7	8:25	1416	1385	1746	1706	1507	1554
12-8	4:05 (1284)	622 (5502)	$728(1576)$	$) 764(1665)$	$807(1683)$	816 (1542)	747
Total	46:10	$\overline{8716}$	$\overline{7692}$	$\overline{9440}$	9272	$\overline{8914}$	$\overline{8807}$
12-10-28	8:25	1849	1427	2752	1711	1596	1667
12-11	8:25	1837	1564	1788	2752	1581	1704
12-12	8:25	1689	1559	1731	1687	1427	1619
12-13	8:25	1611	1612	1833	1782	1599	1687
12-14	8:25	1617	1533	1754	1666	1510	1616
12-15	4:05 (1361)	660(1475)	715(1789)) 868(1722)	835(7220)) $592(1513)$	734
Total	46:10	9263	$\overline{8410}$	$\overline{9726}$	$\overline{9433}$	$\overline{8305}$	9027
12-17-28	8:25	1473	1345	1804	"1727"	1472	1564
12-18	8:25	1642	1455	1772	1773	1546	1638
12-19	8:25	1526	1420	1758	1688	1438	1566
12-20	8:25	1608	144.7	1715	1691	1071	1506
12-21	8:25	1528	1507	1746	1691	1397	1574
12-22	4:05 (1562)	$758(1423)$	690(1688)) 819(1804)) 875(1528)) 644(1561)	757
Total	$\overline{46: 10}$	8535	7864	$\overline{9614}$	$\overline{9445}$	7568	$\widehat{8605}$
12-24-28	8:25	1632	1579	1839	1856	1155	1570
12-25	8:25 -1	'1724" "	"1454" "	"1845" "	"177¢" "	"1228"	'1605"
12-26	8:25	1715	1420	1905	1750	1100	1578
12-27	8:25	1939	1503	1807	1762	1330	1664
22-28	8:25	1570	1496	1824.	1769	1307	1593
12-29	4:05"(1724)	"856"(1454) ${ }^{\prime \prime}$	" 1705 " ${ }^{7}$ (1845)"	" 8985 "'(1r74)"	"'861"'1 1288$)^{\prime \prime}$	""596 ${ }^{6 \pi}(1605)^{\prime \prime}$	"17794'
Total	46:10	$\overline{9116}$	7957	10715	$\overline{97 / 2}$	6716	$\overline{8789}$
12-31-28	8:25	1710	1563	1815	1836	1733	1731
1-1-29	8:25 "	"1635" "	"1469" "	"1811" "	"1751"	"1569"	"1647"
1-2	8:25	"1635"	1511	1792	1800	1595	. 1667 .
1-3	8:25	1668	1437	1810	1707	1534	1631
1-4	8:25	1659	1479	1849	1680	1499	1633
1-5	4:05 (1514)) 735 (1354)	$) 657(1784)$) $866(1751)$	$) 850(1508)$) 732(1582)	768
notal	46:10	$\overline{9042}$	$\overline{8116}$	9945	9624	$\overline{8662}$	$\overline{9077}$
1-7-29	8:25	1574	1440	1815	1698	991	1504
1-8	8:25	169u	1440	1839	1714	1260	1590
1-9	8:25	1698	1510	1815	2743 *	*1375	1628
1-10	8:25	1704	1456	1790	1714	1239	1581
1-11	8:25	1704	1485	1815	1687	1305	1599
1-12	4:05 (1395)	$677(1475)$) 716 (1629)) 790 (1791)	869(1121)) 544 (1482)	719
Total	46:10	9055	$\overline{8047}$	9864	$\overline{9425}$	$\stackrel{5174}{6714}$	$\overline{8621}$

$\left.\begin{array}{lllllllll} & \text { Hr. \& Min. } \\ \text { Worked }\end{array}\right]$

Hr. \& Nin.		Operators				$\begin{aligned} & \text { Av. for } \\ & \text { Group } \end{aligned}$	
Date	Worked	I	2	3	4		
2-25-29	8:25	1969	1723	1940	1885	1459	1795
2-26	8:25	1899	1677	1928	1767	1560	1766
2-27	8:25	1887	1546	1954	1806	1290	1697
2-28	8:25	1762	1577	1826	1805	. 1551	1704
3-1	8:25	2793	1555	1799	2796	1467	1683
3-2	4:05 (1800)	$873(1 \leq 49)$	$703(17455)$	846(1840)	895:15*9)	751 (1677)	813
Total	46:10 101	10188	$\overline{8779} 1$	$1 \overline{0293}$	9951	8878	9458
3-4-29	8:25	1707	2559	1761	1731 *	*1368	1585
3-5	8:25	16*	1413	1772	1731 *	*1082	1528
3-6	8:25	1800	1500	1767	1760	1500	1685
3-7	8:25	1742	1546	1824	1725	1448	1657
3-8	8:25	1729	1367	1702	1625	1397	1564
3-9	4:05 (1486)) 720 (13 51$)$	650(1517)) 73613650)	800 (1156)) $560(1 \times 30)$	693
Total	$\overline{46: 10}$	93¢2	$\overline{7835}$	$\overline{9562}$	$\overline{9372}$	7455	$\overline{8712}$
3-11-29	8:25	1735	1596	1837	1742	1546	1691
3-12	8:25	1653	1500	1838	1720	1608	1684
$3-13$	8:25	1600	1500	1815	1725	1200	1568
3-14	8:25	1698	1519	1815	1720	1300	1610
3-15	8:25	1767	1537	1779	1769	1662	1703
3-16	4:05 (1739)) 8444(1361)	660(1836)) 891 (1853)	899(1364)) $662(1631)$	791
Total	$\overline{46: 10}$	$\overline{9297}$	$\overline{8312} 1$	$1 \overline{0075}$	$\overline{9575}$	7978	$\overline{9047}$
3-18-29	8:25	1725	1564	1826	1742	2072	1586
3-19	8:25	1730	1564	1820	7746	1544	1680
3-20	8:25	1648	2530	1795	1750	1407	1626
3-21	8:25	1804	1485	1834	1769	1032	1585
3-22	8:25	1742	1538	1833	1742	1608	1693
3-23	4:05 (1873)) 908(1706)	827(1798)) $872(1857)$	900(1877)) 910(1822)) 883
Total	$\overline{46: 10}$	$\overline{9557}$	$\overline{8508}$	$\overline{9980}$	$\overline{9647}$	$\overline{7573}$	$\overline{9053}$
3-25-29	8:25	1725	1524	1867	1748	1623	1697
3-26	8:25	1738	1528	1815	1769	1685	1707
-27	8:25	1600	1500	1850	1750	1450	1630
3-28	8:25	1722	$16 \leq 0$	1833	1775	1537	1702
3-29	8:25 "	"1699"	1698	1772	1730	1198	1619
3-30	4:051'(1699) ${ }^{\prime \prime}$	"1r824"(1795)	870(1402)) 680(1571)	761(1149)) $557(1523)$	738
Total	46:10	9308	$\overline{8760}$	$\overline{9817}$	$\overline{9533}$	$\overline{8050}$	$\overline{9093}$
4-1-29	8:25	"1764"	1637	1800	1725	1385	1662
4-2	8:25	1715	2626	1789	1884	1438	1690
4-3	8:25	$17 \bigcirc 5$	1600	1815	1725	1600	1697
4-4	8:25	1769	1619	1800	1750	1546	1697
4-5	8:25	1769	1635	1800	1751	1544	1700
4-6	4:05 (1834)) 889(1588)	770 (1815)) 880 (1815)	880(1541)) 650(1679)	814
Total	46:10	$\overline{9651}$	$\overline{8887}$	988¢	$\overline{9715}$. $\overline{8165}$	$\overline{9260}$

* Repair Days

Date	Hr . \& Min. Worked.	Operators				$\begin{aligned} & \text { Av. for } \\ & \text { Group } \\ & \hline \end{aligned}$	
4-8-29	8:25	1742	1608	1800	1766	1430	1669
4-9	8:25	1765	1608	1776	1752	1556	1689
¢ 5 - 10	8:25	1720	1616	1833	1750	1500	1664
≤-11	8:25	1762	1625	1830	1753	1579	1707
4-12	8:25	1767	1624	1803	$17 \leq 8$	1619	1712
4-13	4:05 (1912)	927 (1622)	$786(1819)$	882(1815)	880 (965)	468	789
Total	56:10	$\overline{9665}$	8667	9924	96x5	$\overline{8052}$	$\overline{9230}$
S-15-29	8:25	1778	1653	1800	17¢2	1608	1716
4-16	8:25	1948	1662	1803	1742	1627	1756
S-17	8:25	1780	1716	1826	1757	1520	1720
4-18	8:25	1778	1653	1800	1698	1653	1717
¢ $\times 19$	8:25	2003	1668	1807	17 i 2	1698	178%
$4-20$	4:05 (1901)) 921 (1563)	758(1753)	850(1815)	880(16455)	797(1735)	841
Total	$\overline{46: 10}$	10208	9110	$\overline{9886}$	$\overline{9561}$	$\overline{8903}$	9534
4-22-29	8:25	1900	1500	1781	1750	1000	1586
4-23	8:25	1668	1668	1712	1826	1650	1705
s-24	8:25	1860	1500	1815	1750	1610	1687
4-25	8:25	1753	$1 \leq 6$	1809	1750	1620	1676
4-26	8:25	2758	$1 \leq 47$	1812	1769	1627	1683
4-27	4:05 (1895)) 918(1573)	665(1650)	800(1679)	814(1638)	794 (1647)	798
Total	46:10	9857	8126	$\overline{9729}$	$\overline{9659}$	8301	9135
4-29-29	8:25	1773	1448	1762 "	" 1757 "	1603	1669
4-30	8:25	1785	1549	1836 "	"1757"	1622	1710
5-1	8:25	1650	1500	1815	1775	1500	1648
5-2	8:25	1775	1220	1850	1650	1616	1662
5-3	8:25	1789	1521	1800	1786	1010	1581
5-4	4:05 (1898)) 920 (1422)	689(1813)	879 (1827)) 886(1321)	640(1656)	803
Total	$\overline{46: 10}$	$\overline{9692}$	$\overline{9127}$	$\overline{99 \pm 2}$	$\overline{9611}$	$\overline{7991}$	$\overline{9073}$
5-6-29	8:25	1778	1464	1807	1759 *	*1752	1708
5-7	8:25	1775	1538	± 762	1757	1534	1673
5-8	8:25 *	*1702	1527	1832	1888	1589	1708
5-9	8:25 *	*1513	1546	1811	1771	1534	1635
5-10	8:25	1558	1551	1850	1784	1548	1658
5-11	¢:05 (1758)) 852(1497)	$725(18<7)$) 895(1868)) 905(1204)) 583 (1635)) 792
Totial	46:10	$\overline{9178}$	$\overline{8331}$	$\overline{9957}$	9864	8540	$\overline{9174}$

[^6]

Period	Hrs. of Work Per Hk .		Opr. No. 1		Opr. No. 2		Opr, No. 3		Opr. No. 4		Opr. NO. 5		Group	
		No. of	Aver.											
		Wk. in	Hourly	\% of	Hourly	$\%$ of	Hourly	\% Of						
		Period	Output	Eff.										
No. 3(Cont? ${ }^{\text {a }}$)														
Two 10-nimuteRests	46.17	8	211.2	113.7	182.3	104.8	214.8	104.5	205.7	109.4	163.9	96;1	195.6	105.8
		9	191.2	103.0	176.5	101.4	214.9	105.6	207.0	110.1	164.8	96.7	190.9	103:2
		10	198.2	106.7	182.0	104.6	215.7	105.0	210.6	112.0	192.0	112.6	199.7	108.0
		11	193.3	104.1	180.7	103.9	210:8	102.6	206.0	109:6	184.7	108.7	195.1	105.5
		12	216.4	116.5	181.4	104.3	211.5	102.9	215.9	114.4	191.4	112.3	203.2	109.9
		13	201,4	108.5	176.6	101.5	214.7	104.5	206.5	109.8	165.4	97.0	192.9	104.3
		14	220.7	118.8	190.1	109.3	222.9	108.5	215.5	114.6	175.0	102.6	204.9	110.8
		15	202.3	108.9	169.7	97.5	207.1	100.8	203.0	108.0	161.5	94.7	188.7	102.1
		16	201.4	108.5	180.0	103.4	218.2	106.2	207.4	110.3	172.8	101.3	195.9	105.9
		17	207.0	111.5	184.3	105.9	216.2	105.2	208.9	111.1	164.0	96.2	196.1	106.1
		18	201.6	108.5	189.7	109.0	212.6	103.5	206.5	109.8	174.4	102.3	196.9	106.5
		19	209.0	112.5	192.5	110.6	214.1	104.2	210.4	111.9	176.8	103.7	200.6	108.5
		20	209,3	112.7	192.1	110.4	214.9	104.6	208.9	111.1	174.4	102.3	199.9	108.1
		21	221.1	119.1	197.3	113.4	214.1	104.2	207.1	110.2	192:8	113.1	206.5	111.7
		22	213.5	115.0	176.0	101.1	210.7	102.5	209.2	111.3	179.8	105.5	197.9	107.0
		23	209:9	113.0	176.0	101.1	215.3	104.8	208.2	110.7	173.1	101.5	196.5	105.3
		24	198.8	107.1	180.4	103.7	215.7	105.0	213.6	113.6	185.0	108.5	198.7	107.5

$\stackrel{\leftarrow}{\stackrel{\rightharpoonup}{*}}$

$\frac{\text { TABLE NO. } 3}{\text { NTCA GROUP }}$
Total Weokly Outputs and Average Weekly Output By Periods of Test

Period	Hrs. of Mork* per Thk	No. of Wk. in poriod	$\begin{gathered} \text { Opor. No, } 1 \\ \text { Total } \\ \text { Weckly } \\ \text { Output } \\ \hline \end{gathered}$	$\begin{gathered} \text { Oper. IVo. } 2 \\ \text { Total } \\ \text { Vcekly } \\ \text { Output } \\ \hline \end{gathered}$	$\begin{gathered} \text { Oper. No. } 3 \\ \text { Total } \\ \text { Meokly } \\ \text { Output } \\ \hline \end{gathered}$		```Oper.No. 5 Total Wookly Output```	Group Total Weckly Output
No. 1	48.00	1	8211	8696	9745	VAC.	7720	8593
Bisc Poriod		2	9002	8826	9996	9155	9075	9211
in Regular		3	9004	8144	9935	9171	8850	9021
Dopt.		4	8518	VAC.	9797	8987	8984	9072
		5	8575	8400	9417	8900	6887	8436
		6	94.69	8370	10074	9139	8344	9179
		7	9650	8112	9923	9006	7681	8874
		8	8872	7925	10031	8828	7427	8616
		TOTAL	71301	58473	78918	63186	35468	71002
		Average	8912.6	8353.3	9864.8	9026.6	8183.5	8875.3
No. 2	48.00	1	. 7500	8008	9518	9354	9052	8687
Introduction		2	9089	8063	9250	9158	8016	8715
to Test Room		3	8664	7857	9215	9566	7757	8572
		4	7891	7994	8697	9202	7129	8182
		5	8357	8198	9263	9237	7746	8560
		TOTAL	$\overline{41501}$	$\widehat{40120}$	45943	46317	39700	42716
		Average	8300.2	8024.0	9188.6	9263.4	7940.0	8543.2
No. 3	46.17	1	8890	7728	9440	9302	7112	8494
Ttyo 10 Min .		2	8716	7692	9440	9272	8914	8807
Rests		3	9263	8410	9726	9433	8305	9027
		4	8535	7864	9614	9445	7568	8605
		5	9416	7957	10115	9742	6716	8789
*See next page		6	9042	8116	9943	9624	8662	9077

Poriod	Hrs. of Tork por WK.	No, of Wh. in period	Oper. No. 1 Total Meckly Output	$\begin{gathered} \text { Oper. No. } 2 \\ \text { Total } \\ \text { Tcekly } \\ \text { Output } \\ \hline \end{gathered}$	Oper. No. 3 Total Weekly Output	Oper. No. 4 Total Weekly Output.	Oper. No. 5 Total Weekly Output	Group Total Weckly Output
No. 3 Cont'd	46.17	7	9055	8047	9864	9425	6714	8621
Tro 10 Min 。		8	9750	84.18	9915	$9 \div 95$	7568	9029
Rosts		9	8826	8148	9921	9557	7607	8812
		10	9152	$\mathrm{Br}_{5} \mathrm{OS}_{5}$	9958	9723	8865	9221
		11	8926	8341	9753	9513	8526	9008
-		12	9991	8377	9765	9932	8836	9380
		13	9298	815:	9911	9534	7636	8907
		14	10188	8779	10293	9951	8078	94.58
		15	9342	7835	9562	9372	7455	8712
		16	9297	8312	10075	9575	7978	$90 \leq 7$
		17	9557	8508	9980	9647	7573	9053
		18	9308	8760	9817	9533	8050	9093
		19	9651	8887	988/	9715	8165	9260
		20	9663	8867	9924	9645	8052	3230
		21	10208	9110	9886	9561	8903	9534
		22	9857	8126	9729	9659	8301	9135
		23	9692	8127	9942	9611	7991	9073
		24	9178	8331	9957	9864	85\%0	9174

* All output figures have been reduced to equivalent figures corresponding to no overtime.

C. TYPETRITIIVG GROUP

There are occasionally opportunities to make observations upon working conditions without setting up test room experiments. It is worthwhile to take advantaie of such opportunities to supplement former studies without appreciable cost and to gain further information of industrial significance. An opportunity for such observation was found in a typist group. These girls are paid on a weekly salary basis, but their increases in salary are based primarily upon output which is determined by an automatic recowding device on the machine indicatime the number of keys struck.*

Information has been gathered conceming the home conditions and temperament of these girls. Their individual comments concerning rest pauses were secured. These comments were almost universally favorable. Their outputs by thirty minute periods were determined for two successive weeks. The fluctuation or output during the different hours of the day and during the different days of the week is show on the following graph. Information has also been gathered as to the nature of the fatigue experienced by these workers.

The advantages of studying this sroup lie in the fact that the mork involves greater montal and less physical effort. Greater concentration is domandec and a bettor reflection of contral nervous system fatigue may be secured. At present the data collected is being used to detormine the factors which affect vorking conditions, output, and fatigue. On the basis of this analysis an attempt will be made to improve working conditions in such dircetions as secm indicated, particularly by determining the best kinds of rest pauses for this type of work. The results of this obscrvational study will be presented in a later report. Detailed data collected thus far are not presented herc becausc it is too carly to draveven tentative conclusions.
D. EFFECT OF OVERTIME ON SHRICIMITCY

The need for the plant to increasc the amount of overtime during the last fow months in ordor to keep up with the production schedule has raised the question of the efiect of longer hours of work upon officiency. No conclusions are possible from the limited amount of data secured to date, but in tivo manual operations separately studied, mica splitting and armature straightening, there is no indication of a decrease in the hourly output mith the increase in length of the working day Irom $8-3 / 4$ hours to $9-3 / 4$ hours (changing the length of the weck of 48 hours to 55 hours). Further studies are needed. As a mattor of interest, however, the limited data already gathered is sumnarized on the folloming pages.
*This machine registers "points." One point ropresents 240 taps on the keyboard.

UNIVERSITY DF WIBCONSIN - MILWAUKEE

$\begin{aligned} & \text { Clock } \\ & \text { No. } \end{aligned}$	Age	Length of Service on rica		Av. Hr. Output No Overtime Days		Av.Hr. Output Overtime Days		\% of Efficiency Overtime versus		
		Years	Months			No Overtime Days				
212	22	1	4	(13)'	184.2			(13)'	196.4	106.6
238	41	1	10	(12)	273.4	(14)	185.9	107.2		
267	24	1	6	(12)	189.4	(9)	192.8	101,8		
*270	37		7	(13)	137.3	(12)	188.1	137.0 . \because		
293	42	2		(12)	166.1	(14)	168.6	101.5		
296	21	1	4	(12)	194.6	(12)	201.1	103.3		
340	21	1	8	(11)	177.5	(12)	191.4	107.8		
413	44	16		(12)	181.6	(11)	194.8	107.3		
453	29	2	5	(9)	179.3	(11)	195.7	109.1		
**4.73	51	6		(13)	165.7	(12)	160.2	96.7		

- Figures in () indicate the number of days used in computing the average.
* Clock No. 270 was the only new operator. She began in July, 1928, which, no doubt, explains the large increase in average hourly output.
** Clock No. 473, the only operator with a lower sverage hourly output on overtime days is 51 years old. The operator's age and the longer working day may explain the lower average hourly output.

The approximate length of service on mica is of February, 1929. This information was obtained from the gang boss, who, in turn, questioned each operator.

1. Factors Winh May Heve Influenced Efficioncy

Following aro some or the reasons which may have influonced the porformance of tho ten mica splitters, causing the average officiency to be higher in an overtimo period than during a nonovertime period:

1. Average room temperature during August was $77,8 \mathrm{~F}$ as compared to 69.9 F for January. The relative humidity for these months respectively was 52.6 and 27.8. Upon questioning the test operators it was learned that on a day when the relative humidity is high, the mica dust gets on the body and causes a disagreeable and annoying itching.
2. The report on 5500 gang pisce work operators for three years showed that January eamings were highor than August by about 2%. (See Appendix B.)
3. The possibility of increasing their carnings without the fear of being criticised by other operators may have been a factor. There is greater pressure for production under overtime conditions.
4. These operators may have been on a general uprard trend in production. The foreman in a mica splitting group says there is commonly an improvement in output during the first throe years.

2. Sunmary

It appears as though the increaso during the overtime pcriod was due mainly to soasonal variation, also that the incroased demand for parts, caused a general speoding up. It scens clear, however, that overtime did not cause an appreciable reduction in hourly output in this instance. The same tentative conclusions and general corments apply to the following data gathered on the armature straightening oparation.

TABLTE
COMPARISON OF PERFORTIANCE STUDY
OVERTIME (IANUARY, 1929) VS. NO OVERTMME (AUGUST, 1928) ARMATURE STRAIGHTENING OPERATION

$\begin{aligned} & \mathrm{Clock} \\ & \mathrm{No} . \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Appre } \\ & \text { Length } \\ & : \frac{\text { on A }}{} \text { Years } \end{aligned}$	mate Service tures Months	Av.Hr. Output No Overtime Days August 1928		Av.Hr.Output \% of Efficiency Overtime Days Overtime Versus January 1929 No Overtime Days		
343	18		11	(14)*	269.2	$(11)^{*}$	309.5	115.0
415	44	5		(10)	342.2	(12)	375.5	109.7
421	27	5		(10)	324.1	(12)	365.3	112.7
424	32	5		(14)	334.8	(12)	331.5	99.0
427	25	5		(9)	331.9	(14)	357.1	107.6
443	32	5		(11)	351.0	(14)	344.3	98.1

Clock No. 343 was the only new operator. She began in April, 1928, which, no doubt, explains the large increase in overage hourly output.

The approximate length of service on armature straightening is of March 1929. This information was obtained from the gang boss and the personnel records.
${ }^{6 *}$ Figures in () indicate the number of days used in computing the average.

Comment: These data have the same general significance as those for mica splitters, presented on the previous page.

E. EFFECT OF REST PAUSES FOR REGULAR SHOP GROUPS

The results of rest pauses in the test group studies indicated the desirability of establishing rest pauses for several regular shop groups. Starting February, 1928, the entire Relay Assembly Department was placed on a rest pause schedule and other shop departments have since been added until at the present time there are approximately 3000 employees having a rest pause in the morning and afternoon, totalling twenty-five minutes daily.

The production rocords of several representative groups of
these employees were studied over a period of tine, both before and after the inauguration of rest pauses, in an effort to determine the effect of rests on production. While only eighty employees' records were studied, the trend of the curves showing their production efficiency parallels similar curves for the test groups.

The following chart contains a graph for each of the shop groups studied.

SECTION V
OUTCOMES, OBSTRVATIONS, AND CONCLUS IONS

A. OUTCO.ES

Two outcomes of these studies have been directly applied in regular departments.

1. Because of the findings indicating that rest pauses do not reduce total output but rather tend to increase it, rest pauses have been established in operating departments having similar operations to those studied. At the present time these rest pauses have been extended to about 3000 employees. (Reported in Section IV.)
2. Of still greater importance is the interviewing program.

The findings conceming the sensitiveness of operators, the vital importance to their happiness of even minor items in the way they are handled and the apparent improvement in work because of a better mental attitude suggested the desirability of still further improvement in the quality of supervision at the lower levels of employment. A separate interviewing study was set up in the Inspection Branch through which a clear picture was secured of those problems, warries, likes, and dislikes of employees thich are related to supervision and conditions of work. All data were impersonal. Names of individuals did not appear in the interviewing studies. These interviews furnished "case studies" for supervisory training and this instruction program was put on the "case method" basis.

The interviewing program in the Inspection Branch produced such a favorable reaction that the program is now being extonded to the Operating Branch. A new organization entitled the Industrial Research Division has becn set up to administer the interviowing program, the continuation of these studies, and the supervisory training program. The interviewing program is a large administrative project which will be reported upon separately.

Apart from the two outcomes reported above data of practical importance are being accumulatod in relation to other proilems of direct industrial significanco. These problems include: (a) the
desirability or undesirability of the five day mook, (b) the probable offect of aneight hour day, (c) the effect of overtime upon output and employmont, and (d) means and methods for dotermining the prosence of fatiguc.

B. OBSERVATIONS AID CONCLUSTONS

The observations and conclusions given hore have been suggested by the results of the experiments conducted thus far. They are not to be construed as final, sinco furthor exporiments may varrant changing.

For tho convenience of tho roader, nev items in this section are separatod from those proviously roported.

1. Ne:t Items

(a) All relay assombly operators in the test room have appreciably increascd their ratc of production and out put. For some operators tho incroase in output has been from 35% to 50%.
(b) Thore has boen a continual uproard trend in output which has been independent of the changes in rest pauses. This upward trend has continued too long to be ascribed to an initial stimulus from the novelty of starting a special study.
(c) The reduction of muscular fatiguo has not been the primary factor in increasing output. Cumulative fatiguc is not present.
(d) Payment; in the small test room gang instead of with the large gang in the regular department mas a factor of appreciable importanco in increasing output.
(c) The information already gained corcoming the cause of increased output needs to be supplemented by a further relative evaluetion of such factors as contentment, training, preoccupation, and concontration.
(f) Thorc has bean an important increase in contentmont omong the girls working undor test room conditions.
(g) Therc has been a decrease in absencur of bout, 80 ; mong the girls since entering the test room group. Test room operators heve had approximatoly one-third as many sick absences as the regular deparment during the last six months.
(h) Test room indications of the importance of the type of supervision to the contentment of the individual operators have been bome out by the success of the interviewing plan in the Inspection Branch with its consequent extention to the Operating Branch.
(i) With rest pauses there has been a decrease in the variation of output and an increase in the rate of output to the point where these improvements more than compensate for the loss of time and increase the total out put. The improvement in consistency in output with a rest pause system would sugjest that the operator consciously or unconsciously introduces brief rest puses or change of pace when the working day is continuous. Regular and recognized rest pauses organize this break of work with a better mental attitude on the part of the operators. The operators took personal time out in addition to the rest pauses except in period No. 6 (six five minute rests).
(k) Output is more directly related to the type of working day than to the number of days in the working week. A five day week did not show any significant improvement in the daily output over that of a five and one-helf day week with a similar working day (15 minuto morning rest and lunch and 10 minute afternoon rest). Its total out put was definitely and proportionately lower.
(1) The afternoon output has definitcily improved as compured ryith forencon out put during the later periods having rest and lunch pauses. During the first 24 weeks of period No. 13, three of the four operators working on flat type rolays showed a slightly higher hourly output in the aftermoon than in the forenoon. (Comparison has not yet been made for operator No. 5 because of the difficulty of converting the numerous round type relays to a standard type with reference to forenoon and afternoon periods. Further comparisons for each operator for all periods are being computed.)
(m) The output upon tho roturn to tho full working day without rest and lunch (period No. 12) was 20% above that of tho test room period (period No. 3). This output did not fall off during the trelve veeks of the featurg.
(n) Period No. 13 returned the fifteen minute morning rest and lunch and the ten minuto afternoon rost. It shows the highest output yet obtained. This further supports
 out put sufficicntly to improve total output.
(0) The output curves by difforent days of the wock show that Monday has the lowcst output. It hia been shom that this is not duc to "practice offoct". Saturday is next lowest. The other four days are fairly uniform. This is regarded as significant in reflecting the absenco of cumulativo fatigue.
(p) The vascular skin riaction test has shown lower afternoon readings, but in its present stato of development it is not sufficiently precise to indicate differencos in fatigue during the different hours of a working day or the amount of fatigus at the same timo on succoeding days. The aftcrnoon readings are significantly lower than the forenoon readings and aftermoon roadings following the fatiguing of the hand and lowor arm muscles aro again significantly lowor than tho afternoon reading without local fatigue.
(q) Test room operators with lower specd show greater consistency of output than operators with greatest specd. By this greater consistoncy the fomor, in part, mako up for the differcnco in the "expected output" as dotermined by manuel ability tests.
(r) The amount of slecp has a minor but definite and significent effect upon output. Individual operators vary in thoir ability to maintain output ithen hours of sleop are fer:.
(s) Less frequent changes in the type of relay being morked upon has not becn a factor in increasing the output in the test room.
(t) There is not a decrease in output during days of poriodic illnoss.
(u) The girls prefur the five day noek to any featurc yet tricd.
(v) A new test group of mica splitters who have always been on a straight piece work basis has shown an appreciable increase in efficiency and total output in a special test room with two ten minute rest periods daily.
(w) The limited relative data already secured upon the mica splitting and armature straightening operations fail to show a reduction in hourly output under "overtime" conditions. (Further studies are needed.)
(x) Individual studies in the mica splitting group show a relationship between the emotional status or the home conditions of operators and the consistency of their output.
(y) Observations of operators in the relay assembly test room indicate that their health is being maintained or improved and that they are working within their capacity.
2. Items Previously Reported.
(Modified by recent findings where necessary.)
(a) The late morning and afternoon slumps which were thought to be due to fatigue are largesy due to production time lost on account of personal time taken by the operators just previous to noon and quitting time.
(b) A slump in production which has been observed to occur in the early afternoon when there is no morning rest and lunch is apparently the result of drowsiness brought about by heavy lunches indulged in by the operators. This is particularly true during the warmer months. These heavy lunches are required because of the long interval between breakfast and lunch time of shop employees.
(c) The rest pauses have a distinct effect upon the uniformity of production. The lowest index of uniformity (morning lunch and rest, afternoon rest and 4:30 stop - period IV.O. 8) was less than half the highest index of uniformity (no rest - period No. 12).
(d) The greatest uniformity of production occurred during period No. 8 immediately following the change of operators Nos. 1 and 2. The uniformity of production during the period just preceding this change was poor. The index of uniformity is consistently lower in the forenoon than in the afternoon.
(c) The highest fluctuation in the rate of working encountered to date exclusive of the "no rest" period No. 12 was during the ten minute rests, period No. 5. Fear of lowered earnings due to maximum amount of time of f and consequent spurt in production after each rest was, no doubt, a factor in causing the irregularity in the rate of working during thes period. t:
(f) The opcritors very widcly in uniformity of pcrformance, but remain in the same rilative position ahen comparcd with each othur in this respect.
(b) The highest average hourly out put of relays issismiled throughout any experiment completed tinus far was obtained over the periods of the "morming lunch, afternoon rest and 4:00 0^{*} clock stop". (Note: Period No. 13-Morning lunch, afternoon rest and 5:00 o'clock stop is now the highest.)
(h) The total daily outputs are not reduced by rest pauses, but are increased. In all features having rest pauses these increases in production were so great as to exclude the possibility of their being chance variations.
(i) The highest total daily output yet obtained was with the full working day bioken by a fifteen minute rest and lunch period in the forenoon and a ten minute rest in the afternoon.
(k) The fifteen minute stretches showing highest outputs are evenly scattered throughout the day with the exception of the beginning and end of the work periods. They are evenly distributed over the days of the week,
(1) If the greatest fifteen minute out put ever obtained by each operator is used as an index of her maximum speod it is found that during the "no rest" period No. 12 the operators maintained an average speed throughout the day which was equivalont to 64% to 72% of their maximum possible outputs, while during the "morning lunch, afternoon rest, and 4:00 0^{\prime} clock stop" period No. 8, their average daily outputs vere equivalent to 80% to 84% of thoir maximum possible output.
(m) The physical condition of the operators ander test has not been lowered.
(n) The chenged working conditions have resulted in creating an eagerness on the part of the oparators to come to work in the morning.
(0) Outside influences tend to create either a buoyent or a depressed spirit which is reflected in production. Evidence of this effect is to be found in the comments and experience of individual operators.
(p) Such improvement in eeneral physical conditions as may have developed has been so sradual that no distinct or unusual reflections in the performance can be noted as a result of this improvement.
(q) The earnings constitute only a fraction of the incentive.
(r) An appreciable increase in output took place when the test room operators were put on special sang pay basis and vere no loneer paid with the larse gang.
(s) Important factors in the production of a better mental attitude and sroater enjoyment of work have been the sreater freedon, less strict supervision and tho opportunity to vary from a fixed paco without roprimand from a ธan boss.
(t) The operators have no clear idea as to why they are ablo to produce more in the tost room; but, as shown in roplies to questionnaires in appondicos B and C of tho roport of August, 1928, there is the foelins that bettor output is in some way relatod to tho distinctly plaasanter, froor, and happior working conditions.
(u) The outcomes of the test room experimont soem to indicate that much can be gained industrially by carrying orioator personal consideration to tho lowest levels of employment.

3. The Importance of Considerate Supervision

The probability that the improvod mental atioitudo of these operators has been an important factor in their increased output mek?s it seem worth while to glve further consideration to this problem at this point.

As far as tho uppor lovels of omployment aro concorned, industry genorally rocosnizes the followins threo conditions, which aro basod upen biclocical principles:
(a) It is recogniz?d. that the emotions affect health. Not only have Pavlov, Camon, and others shown the effect of fear, anxiety, worry, and cther emotions upon the aigestion and the general healih, but it is common experience that worry, unhappiness, and irustratea efforts are more potent factors in breaking down the individual than en excess of hard work at which one is eminen힌y successial.
(b) Variation in output is natural. One is not at his best every day. One does not work equally fast all day long. An off day once in a while is to be expected.
(c) It is believed that in the long run output will largely depend upon the mental and physical state of the individual. Preoccupation, caused by physical ills or unhappy mental states, is an arch-ememy of production.

The acceptance of these general principles has made industry for the men at the higher levels, a pleasant, co-operative, friendly, and interesting activity. To be sure, competition still exists and attention is given to individual production; but this does not injuriously affect the emotions. A man enjoys a fair race with a clear track ahead and encouragement along the way.

Yet, while industry has given important consideration to these biological and human principles when dealing with the higher levels of employment, it may properly be asked whether these same principles have been applied at the lower levels of employment, and, if not, whether they are applicable.

Porhaps uncons ciously industry may have made two fallacious assumptions:

First, it seems to be a general assumption by people everywhere that emotional reactions are of minor importance among those of limited mental scope. The parent thoughtlessly denies the child some harmless thing mich seems unimportant to the father, but which is all-important to the son. There is a difference in Values. The parent rebukes the child in the presence of the boy's play fellows and social equals. It is an unimportant incident to the father, but the child may always cerry the personality scar. The gang boss of ten tries to live up to his title, when he ought to be a group supervisor. He assumes that the gang are thick-skinned and that his thrusts must go deep. It is choracteristic for people to feel the importance of severity and discipline when they first assume authority. The soldier may occasionally fail to salute a colonel without reprimand, but woe to him if he "passes up" a second lieutenant.

As a matter of fact, emotions are stronger and minor matters of greater importance among those people whose horizons are limited and whose interests are few. Rocognition by one's superior, a minor success, and a word of encourggement mean more to such people than to the self-relient mental giant. An operator in the test room recently had a birthday. The girl who sits beside her got up early enough in the morning to make a cake for her and get to work at 7:30. Measured in moncy value the gift was trivial. Measured in personal effort it was greater perhaps than any gifts which might be exchangod amongst those in the higher levels of employmint.

The whole point is that the average employee at the bottom of the industry is keenly sensitive in matters of humen relationship. Why is there failure to recognize this? Perhaps the attitude inherited from the beginn,ngs of the factory period, which were surrounded by class distinctions and a lack of understanding of the human mind wich should have been left behind has not been outgrow. Moreover, the enotion of fear - fear that we may be laughed at for considering a thing so intangible as the human emotions - often keeps us from giving due consideration to this problem. Fmotions exist and business management must be unemotional enough to consider with coolness and candor their place in the organization of working conditions.

Second, there is also the cormon assumption that consistency of output is desirable and may be obtained through discipline. Neither phase of this assumption has been proved. If consistency of production is demanded, the worker must in self-protection make sure that the maximum output figure is kept low enough so that he can consistently approximatc it. Industry would not think of demanding consistency of performance through di scipline in the higher levels of employment in the way that this end is sought at the lower levels.

There is, perhaps, greater need for the recognition of the three principles previous ly mentioned and their application at the lower levels of industry than at the higher levels.

Baumberger, J. P. - "Fatiguc and Error in a Montal Occupation", Journal of Industrial Hygienc, Vol. III.
Bedale, E. M. - "Comparison of the Encrgy Exponditure of a Womon Carrying Loads in Eight Difforont Positions", Report No. 29 of the Industrial Fatiguo Rescarch Board, London.

Emmons, A. B. and Goldthwaitc, J. E. - "A ت̈ork Chair", Journal of Industri al Hygione.

Ficld, L. F. - "Tho Problem of Fatigue", Industrial Managanent, Vol. 58.

Fish, F. P., Hood, F. C., Alcxondor, M. N. - "Rest Periods for Industrial Tiorkars", Resoorch Report No. 13, National Industrial Conference Board.

Frankel, L. K., Floisher, Aloxander - "The Human Factor in Industry" Ficmill. m .

Gilbreth, Frank B. - "Unnecessary Fatigue", Journal of Inaustrial Hygiene, Vol. I.

Goldmark, Josephine, Hopkins, Mary D., Floronce, P. S., Lee, F. S. "Compari son of an Eight-Hour Plant and a Ten-Hour Plant", Public Health Bulletin No. 106.

Hackett, J. D. - "Heal th Maint onanco in Industry", publishod by A. Wi. Shav Company.

Hope, E. W., Hanna, T., Stallybrass, C. 0. - "Industrial Hygiene and Medicine", William Wood and Co.

Jones, D. C. - "A First Course in Statistics", G. Bell \& Sons Ltd., Lond.
Lee, Fredoric S., Vanbuskirk, J. D. - "An Examination of Certain Proposed Tests for Fatigua", American Journal of Physiology, Vol. 63.

Lee, Froderic S. - "The Human Machine and Industrial Efficioncy", Longmons Grion.

Link, Henry C. - "A Practical Study in Industrial Fatiguc", Journal of Industrial Hygiene, Vol. No.

Mather, William - "The Forty-eight Hour Wrok"
Mayers, May R. - "Fatigue in the Washing Dopartments of the New York Steam Laundries", Journal of Industriel Hygiene, Vol. VI.

Orenstein, A. J., Irelond, H. J. - "Experimental Observations Upon The Relation Between Atmospheric Conditions and the Producition of Fatigue in Mins Laborers", Journ.. 1 of Irductrinl Hreiene, Vol. Ir.

```
Polakov, Walter IN: - "Fatigue and Industrial Efficiency," Industrial
    Nianual, Vol. 58.
```

Ryan, A. H. - "Ihe Quantitative Measurement of General Fatigue,"
American Journal of Physiology, vol. 45.
Sanders, A. W. - "The Human Side of How to do it Best," Journal of
Industrial Hyciene, vol. VII.
Shepard, George H. - "Fetigue Tests at Purdue University,"
Industrial Manajement, vol. 63

Spaeth, Reynold A. - "Tho Prevention of Fatigue in Manufacturing Industries," Journal of Industrial Hygiene, vol. I.

Spaeth, Reynold A. - "The Problem of Fatigue," Journal of Industrial Hygiene, vol. I.

Vernon, H. I.., Jones, W. N. - "An Investigation of the Factors Concerned in the Causation of Industrial Accidents," Health of Manition Workers Committee, Memorandum No. 21.

Vernon, H. M., Vemon, il.D. - Wive Hour Spells for Women, with References to Rest Pauses," Report No. 47, Industrial Fatigue Research Bozyd, Iondon.

Vernon, H. M. - "Statistical Information Concerning Output in Relam tion to Hours of Work with Special Reference to the Influence of Sunday Labor," Health of Iiunition Vorkers Committee, Memoranda Nos. 12 and 18.

Vernon, H. I. . "The Influence of Hours of Work and of Ventilation on Output in Tinplate Namufacture," Report No. I, Industrial Fatigue Research Board.

Vermon, H, II. - "The Influence of Rest Pauses and Changes of Posture on the Capacity for Hinscular Work," Report No. 29, Industrial Fatigue Research Board, Iondon.

Vernon, H. M., Bedford, T. - Whe Influence of Rest Pauses on Light Industrial Vork," Report No. 25, Industrial Fatigue Research Board, London.

Wyatt, S. - "Notes on an Experiment on Rest Pauses," Report No. 25, Industrial Fatigue Rescarch Board, London.

Wyatt, S. - "Rest Pauses in Industry," Report No. 42, Industrial Fatigue Research Boerd, London.

Wyatt, S. - "Studies in Repetitive Work with Special Reference to Rest Pauses," Report No. 32, Industrial Fatigue Research Board. Iondon.

APPENDIX A^{*}
 BEGINNING OF TEST AND ESTABLISHMENT OF TTEST ROOM

A. Location of Test Room and Reasons for Selection.
B. Equipment of Test Room and Design of Equipment.
C. Test Conditions Differ from Regular Work Conditions.

The test began on April 25, 1927. The relay asserably job was selected as the one on which the initial study would be conducted, as it represents a high degree of repetitive work. Five operators experienced on this workwere chosen, together with a sixth to act as a layout operator. This group was permitted to remain in the regular department from the beginning of the test, April 25, 1927, and until May 10, 1927, at which time the Test Room was equipped and in readiness.

A. Location of Test Room and Reasons for Selection

The Test Room is located in the southeast comer of Building $47-5$, and was formed by inclosing two sides with temporary board partitions. In selecting this location it was felt that better ventilation could be had since the room was equipped with fans, and because it would not be exposed to the afternoon sun during the summer months. The lighting effect in the Test Room is approximately equivalent to the light in the Relay Assembly Department, except that the distribution is more uniform. This is made possible by the use of lighting fixtures used in a former Illumination Study which were left in this room.

Tho location was also chosen as it afforded a better opportunity for segregation because the operators would not come in constant and direct contact with the main group, thereby reducing the possibilities of tho test group keeping familiar with the activity of the main group, and thus reducing the tendency of similarity of performance.

B. Equipment of Test Room and Design of Equipment

A regular assembly bench of sufficient length to accomodate five positions and include space for the layout operator was installed. Each of the five assembly positions was connected to a recording device so that each time an operator finishes an assembly or completes a cycle, it is automatically registered by an electrical recorder perforating a hole in a moving tape. The perforating mechanism is selective and each operator's respective position is therefore positive, as the operators occupy the same bench position at all times.
*Sections II, III and IV of previous report.

In addition to the assembly bench there are three other small benches upon two of which the recording apparatus is mounted, and the third serves as a stock bench for piece parts. A table, file cabinet, and drafting table comprise the rest of the equipment with the exception of the recording devices which are described in the following paragraphs. A comprehensive view of the Test Room is shown in Photographs No. 155739 and No. 155740, forming a part of this chapter.

A hole has been cut in the bench to the right of each operator's position sufficiently large to accomodate the passage of a relay. When the relay is dropped through this hole it passes into a chute mounted at a 45° angle to the bench, passing by and operating a "flapper" gate or switch and on out into the receptacle. The gate is attached to an axis which extends through the side of the chute. A cam is attached to that portion of the axis extending beyond tho chute and this cam whon operated engages contact springs, thereby closing a circuit and operating the recording perforator which punches a hole in the tape traveling across the mechanism.

The perforating recorder proper consists of a perforator for the printing telegraph modified to meet the conditions of the tost in that the circuit from each oporator's position is connected to a respoctive coil in the perforator which operates tho recording punch associated with that position. A view of this apparatus is shown in Photograph No. 149583.

The travel of the tape through the perforating recordor is accomplished by means of a $110-\mathrm{V}$ A.C. motor of a $1 / 6 \mathrm{H} . \mathrm{P}$. rating, connected through proper gears to friction rollers through which the tape passes. These friction rolls pull the tape through the recording device at a definite spesd of $1 / 4^{\prime \prime}$ per minute.

In the circuit of tho perforating machino a set of five message registers has been included. These registors correspond to the five rows of perforations in the tape, and are therefore selective for each assembly position. Bach rogister functions when the corresponding coil in the perforating device is actuated, and therefore, provides accumulative totals of relays assembled at the particular assembly position to which the register is connected. The advantage of these registers is that a ready means is provided whereby a direct reading of each operator's output may be had for any period.

An automatic temperature and humidity recorder was used for a period to keep a graphic record of atmospheric conditions; however, operating difficulties minimized the advantages to such an extent that this machine was abandoned in favor of the Hygrodeik from which hourly temperature and humidity readings are made.

C. Test Conditions Differ from Regular Work Conditions

The equipment for the assembly of the relays is practically the same as in the regular shop. The greatest varience is that a hole has been provided for each operator into which the finished work is deposited, instead of having to replace it in the compartment boxes from which the coils have been taken.

The conditions surrounding the test are the principal differences. These are the segregation features and the more uniform distribution of day light, as the day light value is much higher since the building in which the test is being conducted is equipped with full sectional width sky lights. Besides these, there is the absence of customary supervision, less interruption due to changing of jobs, visiting, etc. In addition to the material and physical differences, there are the mental or psychological differences which obviously would surround a group of people selected for such a test.

METHOD OF RECORDING OUTFUT DATA

A. Roading of Message Registor Record and Perforated Tape. B. Records Taken for Average Hourly Outputs.
C. Pertinent Records.
D. Uniformity of Performance.

Considerable attention has been given the recording of output, since with adequate and correct records any short periods as well as longer periods, may be selected for separate study.

A. Reading of Message Register Record and Perforated Tape

During the course of the study, readings of tho message registers are taken at half-hour intervals. The figures are entered upon a form and when not imediately uscd in plotting curves are filed for future reference.

The perforated tape is being used in obtaining the exact output during the fifteen-minuto intervals and this is done by counting the number of perforations. Before the tapo or perforations are counted, it is necossary to make an exact division of each fifteen-minute interval. Since, as previously mentioned, the speed of the tape through the perforating machinc is $1 / 4^{\prime \prime}$ a minute, it is obvious that a distance of 3-3/4" represents a fifteen-minuto interval. The tape is then divided into intervals of $3-3 / 4^{\prime \prime}$, and the number of perforations in thoso intervals is counted. This number is an accurate reoord of the total relays assambled during that period. There is a slight variation in the longth of the tape from day to day. This variation, however, is compensated for when the tape is divided into intervals.

In counting the number of perforations in each fifteen-ininute section, care is used in detcrmining how close the first or last perforation comes to tho sectional markings. In this way it is possible to divide the fractional portions of partially completud cycles, and record the nearer correct number in each interval.

The outputs thus obtained are converted to a common basis. This is nocessary as tho schedules of the various types assombled are not sufficient to permit continuous performance on any one type, and tho operators at times are forced during one day's run to work on more than one type. This sometimes causes a fluctuation in the output as some types requiro a different length of time to assemble than others.

Daily curves may be plotted on the basis of these outputs over fifteen-minute intervals for each operator. The curves give a picture of the variation in rate of production at any hour of the day and from them it is possible to select the periods of lessened or increased activity on a very definite basis, and to determine at what periods rest pauses should be introduced in order to be most effective. The curves also bring out any improvement in regularity of performance from day to day as various experiments, such as rest pauses, are tried out.

B, Records Taken for Average Hourly Outputs

Records of the total daily output of each operator and the corresponding total operating time are kept. The outputs are converted to a cormon basis and an average hourly output for the day is determined.

Continuous curves are plotted from these data for each oper ator and a combined curve showing the average performance of the whole group is maintained. These curves show the progress, in so far as average production is concerned, of the individuals and of the group over the perioas of the experiments and they also present a ready means of comparing the performanco of one period against another.

C. Pertinent Rocords

Other records pertincnt to the test and of value as an aid in interpreting results and psychological effects are maintained as follows:

1. The temperature and relative humidity, which are recorded each hour and then averaged, are plotted on the daily average hourly out put curve.
2. A complete report of the daily happenings (History Sheets) of the test is made and this records what changes are made; what transpiros during the day; operators' romarks; our own observations; and anything that will essist as an explanation when rationalizing the performance curve.
3. $A^{\prime \prime}$ Log Sheet" is maintained on each operator upon which her starting and finishing time is entered, and the time at which changes from ono typg to another are made; also all intervals, or non-productive time, such as, personal time out, changes in type, repairs, and anything detracting from the actual production time.
4. An original hospital report, or rocord of physical examination, is kept. This has been supplemonted each time the group is reexamined, whick occurs periodically every five or six weeks. In this
record an attempt has been made to classify each operator, giving her a definite place in the list according to her physical fitness, reactionary tendencies, etc.
5. An attempt was made to discover the home and social environs under wicheach girl lives. A set of questions was prepared and answers were obtained to as many of these as possible.
6. Data have been gathered in the attempt to reflect what in the judgment of the operators themselves is the reason why they do better work under Test Room conditions. This record, together with the records outlined in paragraphs 4 and 5 , is used in determining to what extent the more personal elements influence the individuals' activities and output.

D. Uniformity of Performance

In order to detemnine the effects on uniformity of performence resulting from the various ftatures tried out, a system of obtaining and recording these data has been worked out as follows:

When the tape has been divided into the fifteen-minute intervals, and these intervals counted and recorded, they are changed or corrected to be comparable to the type of relay which had the longest run on the particular day being considered. By doing this, the intervals all become consistent in their relation to each other. The average output on the basis of fifteen-minute intervals is than obtained. This is arbitrarily taken to represent ideal performance, and which obviously would have produced the same total output provided it were actual.

Since it is hardly to be expected that ideal performance can be maintained where the rate of out put depends approximately one hundred per cent on the individual's efforts, it was decided to consider a variation of plus or minus one relay from the theoretical average as being representative of ideal performance. This was done, and upon the plotted curves a line representative of the average was drawn. Two other lines were then draw, one above the average line, to represent the plus-one relay allowance, and one below, to represent the minus-one relay allowance. This arrangement produces a band or field of relatively ideal performance and any points of the curve falling outside of this arbitrarily established. field are counted, and an index of the total variation for any operator for any day or division of a day is thus obtained.

A further advantage is gained by this method in that it permits of the extent of the variation to bo shown singly, i.e., the total
variation on the plus side of the band or the total variation on the minus side of the band may be seen, as well as the grand total for the day.

The figures representative of this variation are tabulated for each operator daily and are then totaled at the conclusion of a specific period. The average variation for any particular poriod is then obtained from which the value of the puriod in terms of uniformity of performance may readily be seen. By this system fluctuations as small as one-tenth of one relay are included in the total, which directly represerts the increased or decreased amount of fluctuation in the rate or working.

As an expedient, however, the uniformity of performance curves are plotted direct from the data and the actual plotting of the fifteenminute interval curves is done only when it is desired to know the trend of the daily production.

Under regular operating conditions the work which was selected for the test is done by one large gang, the individual members of which share proportionarly in the eamings of the gang as a whole. The operators selected for the test were members of this large gang. Under this system individual effort is not always actually recognized or rewarded to the fullest extent; also no definite figures on individual out puts are kept.

For the purpose of the test it was necessary that it be known what each of the assembly operators selected was capable of doing in the way of daily outputs, and it was also desirable that some method of payment should be introduced wich would pay each one in direct proportion to her efforts vile on test. It was felt that, unless the latter were done, the operators would no: respond with the fullest cooperation that would be essential to a test of this nature.

Also, it was necessary that the operators should feel assured that they would not suffer financially in any way as a result of their participation in the test. They were told, then, that a method of payment would be introduced after the test was well under may, which rould assure them eamings equal to what they had been getting in the past, with the possibility that these earnings mould actuelly be increased should their outputs obtained in the Test Room iicrease over those obtained in the regular geng.

For two weeks previous to the start of the test, accurate records were kept of the individual outputs of the operators while working under the normal conditions of operation in the regular department. These records gave a picture for use as a basis of comparison with later results and also made it possible to ostablish piece rates for use in the Test Room.

The average earnings of the operators used in the test vere computed by totaling the hourly picce work earnings for March, April, and May, 1927, as shown on their respective attendance records. During this period the operators averaged $\$.553$ an hour or 64.66% earnings over their average hourly day rate. These average hourly earnings vere increased 23.8% as an allowance to cover the rate of the layout operator who participates in the carnings but who has no direct output. This allorance brought the average hourly rate which must be earned by each assembly operator up to $\$.686$. Thus, piece rates figured to return earmings of $\$.686$ an hour on the basis of average outputs nould permit all the operators in the gang to make earnings of 64.66% over their hourly day rate.

The total outputs of each type of relay assembled during the two weeks previous to the start of the test were reduced to an average hourly basis which, when divided into $\$.686$ gave a piece rate to be used for that particular type in the Test Room.

It should be mentioned here that the types assembled just previous to the start of the test. were the ones selected tobe run in the Test Room so far as possible.

The rates figured as above were checked by applying them against the outputs obtained for the two weeks previous to the test, and the results showed that the earnings returned would be on the basis desired, This was done to prove the adequacy of the proposed rates before putting them into effect.

After the start of the test, the operators worked for five weeks in the Test Room under exactly the seme conditions as those in effect in the regular gang. They usea the same piece rates as were in effect and shared in the earnings of the whole group as formerly. This was done to enable them to become thoroughly familiar with the new conditions and surroundings before introducing any changes whatever.

At the end of the fiveweek period, the new piece rates were introduced and the Tost Room group was separated into a special gang to be paid on the basis of earnings obtained from the piece rates effective for the Test Room work only. This was done in order that the entire earmings resulting from their efforts nould be roturned directly to them and not distributed over a large number of people. By these means we were able to easily convince the operators that any gains in output rould be returned entirely to them and we were thus reasonably assured of their full cooperation.
A. Seasonal Variation
B. Vacations and Practice Effect

A. SEASONAL VARIATION

In order to determine the existence or absence of general seasonal fluctuations in the output rate, two sets of data were examined. There were (1) the percentage earnings of the whole group of approximately fifty-five hundred gang piece work operators for a three-year period expressed as a percentage of the base rate, and (2) the output of a small group of assembly operators for one year beginning March, 1927, expressed as a percentage of the bogey. In the latter case twentv-nine operators were selected from an examination of the bogey book and the elimination of operators whose record showed changes in the bogey, illness, and extended absence during the period under investigation.

The results of this study may be read directly from the accompanying chart to which average monthly temperatures have been added. The chart shows two things clearly: (1) A general upward trend in the production rate during the period under examination; and (2) a definite seasonal variation during the year, producing a two-hump curve with high points in the spring and fall and low points in mid-summer and midwinter. The individual yearly variations, and hence the average variation, are consistent in the type of seasonal fluctuation shown. The fluctuations are not extrene but are worthy of consideration in interpreting the data of this experiment.

The interpretation of this seasonal fluctuation is not entirely easy. The average monthly temperatures which are given on the chart show that the fluctuation is not directly and entircly a function of temper ture. Obviously humidity and suddon changes in temperature, as well as the dry bulb temperature itsclf, would be factors in determining output. Other factors which may influence the vitality of the worker are seasonal changes in the amount of sunlight, changes in the diet due to the materials available in the market, and changes in activities outside of factory hours.

An examination of the curves shows that the lowest production is in tho summer and thichighest production in the fall. January is always the low point in the yinter slump but the low point in summer production may be in June, July, or August. Production usually reaches its fall peak in November and its spring peak in April or May. While tho curves do not closely follow the temperature the fluctuation is so consistent as to indicate that extremes of temperature in either direction are disadvantagcous. The upper critical point seems to be somewhore between 60° and 70°, and the lower critical point between 25° and $30^{\circ} \mathrm{F}$. When the

* Section X of previous report.
average temperature moves far beyond either of these critical points production definitely drops. It is to be expected that the movement of the curve showing weekly output for twenty-nine operators would be more variable than the curve showing production for the large group of assembly operators.

B. VACATIONS AND PRACTICE EFFECT

The examination of the bogey book showing the output of individual operators during the year from March,-1927, to March, 1928, showed that many operators had an unusually low production for the week following their vacation. Comparative data were drawn off from this book showing the production of one hundred twenty-one operators for the week before their vacation and for the week after. The results of this computation are shown on the following sheet.

Sixty-nine of these operators had a one-weok vacation and it will be seen that their outrut for the week following vacation waz practically identical with their average output for the week preceding vacation.

Fifty-tro of the operators received a two-reek vacation. The folloring table shows that their production, in terms of a percentage of the bogey, was 2.9% less the week after vacation than the meek before. The standard deviation of the difference is 1.51 . The probable error of the difference is 1.02.

The intorpretation of the reliability of this avorage drop in production by statistical comparison of the average differonce with its standard deviation and probable error shows a probability of ninety-seven chances in one hundred that the average production of all operators would be somewhat less the week following a tro-weok vacation than the week before.

This limited study is, therefore, not conclusivo but shows the high 1 robability that such a difference exists. Should further data confirm this finding, it would seem that a tro-week vacation period produces a physical condition or a "lack of practice" inich causes the morker to work at a slightly lover rate when first resuming work.

UNIVERSITY DF WISCONSIN - MILWAUKEE

[^0]: *Personal time out is not deducted in computing "time rorked."

[^1]: UNIVERSITY DF WISCONSIN - MILWAUKEE

[^2]: * Operators Nos. $1 \& 2$ replaced at beginning of this period.

[^3]: *Operators Nos. $1 \& 2$ reflaced at beginning of this period.

[^4]: *Iayout Operator

[^5]: *Data werc not collected for operator No. 5 since she is working on round rather than flat relays and is continually changing types throughout the day.

[^6]: * Repair Days

